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Chapter One

Executive summary of mom4pl

MOM4pl is a B-grid hydrostatic nonBoussinesq ocean model, with a Boussinesq
option. This chapter provides an itemized summary of various code features.
More discussion is provided in subsequent chapters. Note that items written in
small capitals are new or substantially updated relative to MOM4.0.

1.1 GENERAL FEATURES

e GENERALIZED DEPTH AND PRESSURE BASED VERTICAL COORDINATES.

— Full support for the quasi-horizontal coordinates

s=1z
* zZ—n
= = H
T (H + n)
s=p
* P—Pa
S = = 0 _—
P <pb - Pa)
- Partial support for the terrain following coordinates
SN ) R |
s = =
o Hin
s—gp) = P Pa
pb - pa

There is presently no support for terrain following coordinates using
neutral physics and sophisticated horizontal pressure gradient solvers.

o Generalized horizontal coordinates, with the tripolar grid of Murray (1996)
supported in test cases. Other orthogonal grids have been successfully em-
ployed with MOM4 (e.g., Australian BLUELINK project).

o Parallel programming: mom4p1 follows the parallel programming approach
of MOM4.0, and is written with arrays ordered (i, j, k) for straightforward
processor domain decomposition. As with MOM4.0, mom4p1 relies on the
GFDL Flexible Modeling System (FMS) infrastructure and superstructure
code for computations on multiple parallel machines, with the code having
been successfully run on dozens of computer platforms.

e EXPLICIT FREE SURFACE AND EXPLICIT BOTTOM PRESSURE SOLVER: MOM4
employs a split-explicit time stepping scheme where fast two-dimensional
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dynamics is sub-cycled within the slower three dimensional dynamics. The
method follows ideas detailed in Chapter 12 of Griffies (2004), which are
based on Killworth et al. (1991), Griffies et al. (2001). Chapter 7 in this docu-
ment presents the details for mom4pl.

Time stepping schemes: The time tendency for tracer and baroclinic velocity
can be discretized two ways.

— The first approach uses the traditional leap-frog method for the invis-
cid/dissipationless portion of the dynamics, along with a Robert As-
selin time filter. This method is not fully supported, but is retained for
legacy purposes.

— The preferred method discretizes the time tendency with a two-level
forward step, which eliminates the need to time filter. Tracer and ve-
locity are staggered in time, thus providing second order accuracy in
time. For certain model configurations, this scheme has been found to
be twice as efficient as the leap-frog based scheme since one can take
twice the time step with the two-level approach. Furthermore, without
the time filtering needed with the leap-frog, the new scheme conserves
total tracer to within numerical roundoff. This scheme is discussed in
Griffies et al. (2005) and Chapter 7 of this document, and detailed in
Chapter 12 of Griffies (2004).

EQUATION OF STATE: The equation of state in mom4p1 follows the formu-
lation of Jackett et al. (2006), where the coefficients from McDougall et al.
(2003b) are updated to new empirical data.

UPDATED FREEZING TEMPERATURE FOR FRAZIL: Accurate methods for com-
puting the freezing temperature of seawater are provided by Jackett et al.
(2006). These methods allow, in particular, for the computation of the freez-
ing point at arbitrary depth, which is important for ice shelf modelling.

CONSERVATIVE TEMPERATURE: mom4pl time steps the conservative tem-
perature described by McDougall (2003) to provide a measure of heat in the
ocean. This variable is about 100 times more conservative than the tradi-
tional potential temperature variable. An option exists to set either conser-
vative temperature or potential temperature prognostic, with the alternative
temperature variable carried as a diagnostic tracer.

PRESSURE GRADIENT CALCULATION: The pressure gradient calculation has
been updated in mom4p1 to allow for the use of generalized vertical coordi-
nates. A description of the formulation is given in Chapter 4. None of the
sophisticated methods described by Shchepetkin and McWilliams (2002) are
implemented in mom4p1, and so terrain following vertical coordinates may
suffer from unacceptably large pressure gradients errors in momd4p1.

Partial bottom steps: mom4pl employs the partial bottom step technology
of Pacanowski and Gnanadesikan (1998) to facilitate the representation of
bottom topography. This approach is implemented for all of the vertical co-
ordinates.
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e TRACER ADVECTION: mom4pl comes with the following array of tracer ad-
vection schemes.

— First order upwind; this scheme is available with either time stepping
scheme.

— Second order centred differences; this scheme is unstable for the two-
level scheme, so is only available for the three-level (leapfrog) time step-
ping.

— Fourth order centred differences; this scheme is unstable for the two-
level scheme, so is only available for the three-level (leapfrog) time step-
ping. This scheme assumes the grid is uniformly spaced (in metres),
and so is less than fourth order accurate when the grid is stretched, in
either the horizontal or vertical.

— Sixth order centred differences; this scheme is unstable for the two-level
scheme, so is only available for the three-level (leapfrog) time stepping.
This scheme assumes the grid is uniformly spaced (in metres), and so
is less than sixth order accurate when the grid is stretched, in either
the horizontal or vertical. This scheme is experimental, and so not sup-
ported for general use.

— Quicker scheme is third order upwind biased and based on the work
of Leonard (1979). Holland et al. (1998) and Pacanowski and Griffies
(1999) discuss implementations in ocean climate models. This scheme
does not have flux limiters, so it is not monotonic. It is available with
either time stepping scheme.

— Quicker scheme in mom4p1 differs slightly from that in MOM3, and so
the MOMS3 algorithm has also been ported to momd4p1. It is available
with either time stepping scheme.

— Multi-dimensional third order upwind biased approach of Hundsdor-
fer and Trompert (1994), with Super-B flux limiters. The scheme is avail-
able in mom4p1 with either time stepping scheme.

— Multi-dimensional third order upwind biased approach of Hundsdor-
fer and Trompert (1994), with flux limiters of Sweby (1984). It is avail-
able in mom4p1 with either time stepping scheme.

— The second moment scheme of Prather (1986) has been implemented in
momd4pl. It is available without limiters, or with the limiters of Merry-
field and Holloway (2003). It is available in mom4p1 with either time
stepping scheme.

— The piece-wise parabolic method has been implemented in mom4pl1. It
is available in mom4p1 with either time stepping scheme.

o TRACER PACKAGES: mom4pl comes with an array of tracer packages of use
for understanding water mass properties and for building more sophisti-
cated tracer capabilities, such as for ocean ecosystem models. These pack-
ages include the following.
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— Idealized passive tracer module with internally generated initial condi-
tions. These tracers are ideal for testing various advection schemes, for
example, as well as to diagnose pathways of transport.

— An ideal age tracer, with various options for specifying the initial and
boundary conditions.

— The OCMIP2 protocol tracers (CO,, CFC, biotic).

— A new model of oceanic ecosystems and biogeochemical cycles is a state
of the art model that considers 22 tracers including three phytoplankton
groups, two forms of dissolved organic matter, heterotrophic biomass,
and dissolved inorganic species for C, N, P, Si, Fe, CaCO3 and O, cy-
cling. The model includes such processes as gas exchange, atmospheric
deposition, scavenging, N; fixation and water column and sediment
denitrification, and runoff of C, N, Fe, Oy, alkalinity and lithogenic ma-
terial. The phytoplankton functional groups undergo co-limitation by
light, nitrogen, phosphorus and iron with flexible physiology. Loss of
phytoplankton is parameterized through the size-based relationship of
Dunne et al. (2005). Particle export is described through size and tem-
perature based detritus formation and mineral protection during sink-
ing with a mechanistic, solubility-based representation alkalinity addi-
tion from rivers, CaCO3 sedimentation and sediment preservation and
dissolution.

Penetration of shortwave radiation as discussed in Sweeney et al. (2005).

Horizontal friction: mom4p1 has a suite of horizontal friction schemes, such
as Smagorinsky laplacian and biharmonic schemes described in Griffies and
Hallberg (2000) and the anisotropic laplacian scheme from Large et al. (2001)
and Smith and McWilliams (2003).

Convection: There are various convective methods available for producing
a gravitationally stable column. The scheme used most frequently at GFDL
is that due to Rahmstorf (1993).

NEUTRAL PHYSICS AND BOUNDARY REGIONS: There are new options avail-
able for treating neutral physics within boundary regions, as motivated from
ideas proposed by Ferrari and McWilliams (2007). The mom4p1 formulation
is given in Chapter 15

FORM DRAG: MOM4p1 has an implementation of the transformed Eulerian
mean approach of Greatbatch and Lamb (1990) and Greatbatch (1998), fol-
lowing the methods from Ferreira and Marshall (2006). Also, an alternative
form drag scheme from Aiki et al. (2004) is available.

TIDAL MIXING PARAMETERIZATION: The tidal mixing parameterization of
Simmons et al. (2004) has been implemented as a means to parameterize the
diapycnal mixing effects from breaking internal gravity waves, especially
those waves influenced by rough bottom topography. Additionally, this
scheme has been combined with that used by Lee et al. (2006), who discuss
the importance of barotropic tidal energy on shelves for dissipating energy
and producing tracer mixing. Chapter 13 presents the mom4p1 formulation.
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o Other vertical mixing schemes: mom4p1 comes with an array of vertical mix-
ing schemes, such as the following.

— Constant background diffusivity proposed by Bryan and Lewis (1979).

- Richardson number dependent scheme from Pacanowski and Philan-
der (1981).

— The KPP scheme from Large et al. (1994).

— GENERAL OCEAN TURBULENCE MODEL (GOTM) (Umlauf et al., 2005),
with numerous options, has been ported for use with mom4p1.

e UPDATE OF OVERFLOW SCHEMES: mom4pl comes with various methods of
use for parameterizing, or at least facilitating the representation of, dense
water moving into the abyss. These schemes are documented in Chapter 16.

e REFINED OPEN BOUNDARY CONDITIONS MODULE: The open boundary con-
ditions module has been updated for mom4p1 to facilitate its use for regional
modelling. This scheme is documented in Chapter 11.

e UPDATED SPURIOUS MIXING DIAGNOSTIC: Griffies et al. (2000b) describe an
empirical diagnostic method to diagnose the levels of mixing occurring in
a model. This diagnostic required some upgrades to allow for the use of
thickness weighting for time stepping the prognostic fields. This diagnostic
is described in Chapter 18.

e STERIC SEA LEVEL DIAGNOSTIC: We compute the steric sea level diagnos-
tically for the case when running a Boussinesq model. The formulation is
given in Chapter 20.

o REVISED TEST CASES: All of the test cases have been revised as well as the
addition of some new tests. Documentation of these tests is presented in Part
5 of this document.

e UPDATED FMS INFRASTRUCTURE AND PREPROCESSING TOOLS: As with all
releases of mom4, it comes with updated infrastructure, preprocessing code,
coupling code, etc. supported by an array of scientists and engineers at
GFDL.

1.2 RELATING MOM4P1 TO MOM4.0

o Backward compatibility

There is no option that will provide bitwise agreement between mom4p1 sim-
ulations and MOM4.0 simualations. Providing this feature was deemed too
onerous on the development of mom4pl, in which case many of the algo-
rithms were rewritten, reorganized, and modified.

Nonetheless, some features have been preserved, with the aim to provide
a reasonable path towards backward checking. In particular, the mom4p0
neutral physics algorithm has been retained, and indeed is recommended for
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production runs rather than the more recently developed mom4p1 altorithm
(Chapter 15). Additionally, changes to KPP mentioned below are provided
in the mom4p1 version of this module, with the MOM4.0 version ported to
mom4pl.

e Bug fixes

1. The shortwave penetration module in MOM4.0 failed to account for the
undulating surface height when computing the attenuation of short-
wave entering the ocean. For many cases this bug is of minor conse-
quence. But when refining the vertical resolution, the surface height
undulations must be accounted for when attentuating shortwave. Ad-
ditionally, for general vertical coordinates, undulating depths are the
norm, so the shortwave algorithm needed to be updated.

2. The KPP vertical mixing scheme included many places where the verti-
cal grid was assumed to be rigid and one dimensional. As for the short-
wave, this code was originally developed for a rigid lid z-model. When
generalizing to free surface, partial bottom steps, and generalized verti-
cal, the vertical grid becomes a dynamic three dimensional array, which
required some modifications to the code.

e General cleanup and additions

1. Numerous additional diagnostic features
2. Basic code clean up with bit more tidy code style in most places

3. Thoroughly updated documentation of mom4pl as a complement to
the MOM4 Technical Guide of Griffies et al. (2004)

e Unresolved issues and minimally tested features

1. The open boundary conditions (Chapter 11) have been tested only with
depth-based vertical coordinates, with emphasis on geopotential. In
principle, the code should work transparently for the zx and z(®) coor-
dinates as well, since the barotropic algorithms are all the same. The
OBCs with pressure based vertical coordinates, however, will need to
be revisited.

2. As stated in Section 1.1, there is only partial support for the terrain fol-
lowing vertical coordinates in mom4p1. There are no active research
applications at GFDL with this coordinate, so its features are less devel-
oped than the quasi-horizontal general vertical coordinates.



Chapter Two

Synopsis of mom4p1l

The purpose of this document is to detail the formulation, methods, and selected
SGS parameterizations of mom4p1. This document complements many of the dis-
cussions in the MOM3 Manual of Pacanowski and Griffies (1999), the MOM4 Tech-
nical Guide of Griffies et al. (2004), and the monograph by Griffies (2004).

The equations and methods of mom4p1 are based on the hydrostatic and non-
Boussinesq equations of the ocean along with a selection of subgrid scale (SGS)
parameterizations. The model is written with rudimentary general vertical coor-
dinate capabilities employing a quasi-Eulerian algorithm. Notably, this approach
precludes it from running as a traditional isopycnal layered model, which gener-
ally use quasi-Lagrangian algorithms. Nonetheless, the generalized vertical co-
ordinate features of mom4p1 distinguish it most noticeably from MOM4.0. The
purpose of this chapter is to summarize the basic elements of mom4p1. Features
new relative to MOM4.0 are highlighted in smallcaps.

2.1 WHAT IS MOM?

The Modular Ocean Model (MOM) is a numerical representation of the ocean’s
hydrostatic primitive equations. It is designed primarily as a tool for studying the
ocean climate system. Additionally, MOM has been used in regional and coastal
applications, with many new features in mom4p1 aimed at supporting this work.
The model is developed by researchers from around the world, with the main algo-
rithm development and software engineering provided by NOAA’s Geophysical
Fluid Dynamics Laboratory (GFDL). The model is freely available via
http: //www.gfdl.noaa.gov/ fms

MOM evolved from numerical ocean models developed in the 1960's-1980’s by
Kirk Bryan and Mike Cox at GFDL. Most notably, the first internationally released
and supported primitive equation ocean model was developed by Mike Cox (Cox
(1984)). It cannot be emphasized enough how revolutionary it was in 1984 to freely
release, support, and document code for use in numerical ocean climate modeling.
The Cox-code provided scientists worldwide with a powerful tool to investigate
basic and applied questions about the ocean and its interactions with other compo-
nents of the climate system. Previously, rational investigations of such questions
by most scientists were limited to restrictive idealized models and analytical meth-
ods. Quite simply, the Cox-code started what has today become a right-of-passage
for every high-end numerical model of dynamical earth systems.

Upon the untimely passing of Mike Cox in 1990, Ron Pacanowski, Keith Dixon,
and Tony Rosati rewrote the Cox code with an eye on new ideas of modular pro-
gramming using Fortran 77. The result was the first version of MOM (Pacanowski
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et al. (1991)). Version 2 of MOM (Pacanowski (1995)) introduced the memory win-
dow idea, which was a generalization of the vertical-longitudinal slab approach
used in the Cox-code and MOM1. Both of these methods were driven by the de-
sires of modelers to run large experiments on machines with relatively small mem-
ories. The memory window provided enhanced flexibility to incorporate higher
order numerics, whereas slabs used in the Cox-code and MOM1 restricted the nu-
merics to second order. MOM3 (Pacanowski and Griffies (1999)) even more fully
exploited the memory window with a substantial number of physics and numerics
options.

The Cox-code and each version of MOM came with a manual. Besides describ-
ing the elements of the code, these manuals aimed to provide transparency to
the rationale underlying the model’s numerics. Without such, the model could in
many ways present itself as a black box, thus greatly hindering its utility to the
scientific researcher. This philosophy of documentation saw its most significant
realization in the MOM3 Manual, which reaches to 680 pages. The present docu-
ment is written with this philosophy in mind, yet allows itself to rely somewhat on
details provided in the previous manuals as well as theoretical discussions given
by Griffies (2004).

The most recent version of MOM is version 4. The origins of MOM4 date back
to a transition from vector to parallel computers at GFDL, starting in 1999. Other
models successfully made the transition some years earlier (e.g., The Los Alamos
Parallel Ocean Program (POP) and the OCCAM model from Southampton, UK).
New computer architectures generally allow far more memory than previously
available, thus removing many of the reasons for the slabs and memory window
approaches used in earlier versions of MOM. Hence, we concluded that the mem-
ory window should be jettisoned in favor of a straightforward horizontal 2D do-
main decomposition. Thus began the project to redesign MOM for use on parallel
machines.

2.2 FIRST RELEASE OF MOM4.0: OCTOBER 2003

As may be anticipated, when physical scientists aim to rewrite code based on soft-
ware engineering motivations, more than software issues are addressed. During
the writing of MOM4, numerous algorithmic issues were also addressed, which
added to the development time. Hence, the task of rewriting MOM3 into MOM4.0
took roughly four years to complete.

2.3 FIRST RELEASE OF MOM4P1: LATE 2007

Griffies spent much of 2005 in Hobart, Australia as a NOAA representative at the
CSIRO Marine and Atmospheric Research Laboratory, as well as with researchers
at the University of Tasmania. This period saw focused work to upgrade MOM4
to include certain features of generalized vertical coordinates. An outline of these,
and other features, is given in the following sections.

By allowing for the use of a suite of vertical coordinates, mom4p1 is algorith-
mically more flexible than any previous version of MOM. This work, however,
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did not fundamentally alter the overall computational structure relative to the last
release of MOM4.0 (the mom4p0d release in May 2005). In particular, mom4p1
is closer in “look and feel” to mom4p0d than mom4p0a is to MOMS3.1. Given this
similarity, it was decided to retain the MOM4 name for the mom4p1 release, rather
switch to MOMb5. However, it is notable that the nomenclature uses the smaller
case “mom4pl”, which is indicative of the more experimental nature of the code
than the MOM4.0 version. That is, mom4p1, with its multitude of extended op-
tions, should be considered an experimental code. This situation then encourages
a more critical examination of simulation integrity from the user than warranted
with the more mature algorithms in MOM4.0.

2.4 FUNDAMENTALS OF MOM4P1

In this section, we outline fundamental features of mom4p1; that is, features that
are always employed when using the code.

e GENERALIZED VERTICAL COORDINATES: Various vertical coordinates have
been implemented in mom4pl. We have focused attention on vertical coor-
dinates based on functions of depth or pressure, which means in particualar
that momd4p1 does not support thermodynamic or isopycnal based vertical
coordinates.*

The following list summarizes the coordinates presently implemented in
mom4pl. Extensions to other vertical coordinates are straightforward, given
the framework available for the coordinates already present. Full details of
the vertical coordinates are provided in Chapter 6.

— Geopotential coordinate as in MOM4.0, including the undulating free
surface at z = 7 and bottom partial cells approximating the bottom
topography at z = —H

s =z. (2.1)

— Quasi-horizontal rescaled height coordinate of Stacey et al. (1995) and
Adcroft and Campin (2004)

s=2z"
:H(z—n)‘ (2.2)
H+n
— Depth based terrain following “sigma” coordinate, popular for coastal
applications
z-7 (2.3)
 H+n'

*The Hallberg Isopycnal Model (HIM) is available from GFDL for those wishing to use layered
models. HIM is a Fortran code that is fully supported by GFDL scientists and engineers. Information
about HIM is available at http://www.gfdl.noaa.gov/fms/.
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— Pressure coordinate
s=p (2.4)

was shown by Huang et al. (2001), DeSzoeke and Samelson (2002), Mar-
shall et al. (2004), and Losch et al. (2004) to be a useful way to transform
Boussinesq z-coordinate models into nonBoussinesq pressure coordi-
nate models.

- Quasi-horizontal rescaled pressure coordinate
s=p"
o (PP (2:5)
=Pp — ,
Pv Pa
where p, is the pressure applied at the ocean surface from the atmo-

sphere and/or sea ice, py, is the hydrostatic pressure at the ocean bot-
tom, and p} is a time independent reference bottom pressure.

— Pressure based terrain following coordinate

s =g
B ( P—pa ) (2.6)
Pb — Pa '

- All depth based vertical coordinates implement the volume conserving,
Boussinesq, ocean primitive equations.

Note the following points:

— All pressure based vertical coordinates implement the mass conserving,
nonBoussinesq, ocean primitive equations.

— There has little effort focused on reducing pressure gradient errors in
the terrain following coordinates (Section 4.2). Researchers intent on
using terrain following coordinates may find it necessary to implement
one of the more sophisticated pressure gradient algorithms available in
the literature, such as that from Shchepetkin and McWilliams (2002).

— Use of neutral physics parameterizations (Section 5.2.3 and Chapter
15) with terrain following coordinates is not recommended with the
present implementation. There are formulation issues which have not
been addressed, since the main focus of neutral physics applications at
GFDL centres on vertical coordinates which are quasi-horizontal.

— Most of the vertical coordinate dependent code is in the
mom4 /ocean core/ocean thickness mod

module, where the thickness of a grid cell is updated according to the
vertical coordinate choice. The developer intent on introducing a new
vertical coordinate may find it suitable to emulate the steps taken in
this module for other vertical coordinates. The remainder of the model
code is generally transparent to the specific choice of vertical coordi-
nate, and such has facilitated a straightforward upgrade of the code
from MOM4.0 to mom4p1.
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o Generalized horizontal coordinates: momd4p1 is written using generalized
horizontal coordinates. The formulation in this document follows this ap-
proach as well. For global ocean climate modelling, mom4pl comes with
test cases (the OM3 test cases) using the tripolar grid of Murray (1996). Other
orthogonal grids have been successfully employed with MOM4.0.

Code for reading in the grid and defining mom4 specific grid factors is found
in the module

mom4 /ocean_core/ocean grids.mod.

MOM comes with preprocessing code suitable for generating grid specifica-
tion files of various complexity, including the Murray (1996) tripolar grid.
Note that the horizontal grid in mom4 is static (time independent), whereas
the vertical grid is generally time dependent, hence the utility in separating
the horizontal from the vertical grids.

o Parallel programming: mom4p1 follows the parallel programming approach
of MOM4.0, and is written with arrays ordered (i, j, k) for straightforward
processor domain decomposition.

e EXPLICIT FREE SURFACE AND EXPLICIT BOTTOM PRESSURE SOLVER: MOM4
employs a split-explicit time stepping scheme where fast two-dimensional
dynamics is sub-cycled within the slower three dimensional dynamics. The
method follows ideas detailed in Chapter 12 of Griffies (2004), which are
based on Killworth et al. (1991), Griffies et al. (2001). Chapter 7 presents the
details for mom4p1, and the code is on the module

mom4 /ocean core/ocean barotropic mod.

o Time stepping schemes: The time tendency for tracer and baroclinic veloc-
ity can be discretized two ways. (1) The first approach uses the traditional
leap-frog method for the inviscid/dissipationless portion of the dynamics,
along with a Robert-Asselin time filter. (2) The preferred method discretizes
the time tendency with a two-level forward step, which eliminates the need
to time filter. Tracer and velocity are staggered in time, thus providing sec-
ond order accuracy in time. For certain model configurations, this scheme
has been found to be twice as efficient as the leap-frog based scheme since
one can take twice the time step with the two-level approach. Furthermore,
without the time filtering needed with the leap-frog, the new scheme con-
serves total tracer to within numerical roundoff. This scheme is discussed in
Griffies et al. (2005) and Chapter 7 of this document, and detailed in Chapter
12 of Griffies (2004). The code implementing these ideas in mom4p1 can be
found in

mom4 /ocean_core/ocean_velocitymod

mom4/ocean_tracers/ocean_tracer_mod

o Time stepping the Coriolis force: As discussed in Chapter 10, there are vari-
ous methods available for time stepping the Coriolis force on the B-grid used
in mom4. The most commonly used method for global climate simulations
at GFDL is the semi-implicit approach in which half the force is evaluated at
the present time and half at the future time.
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e EQUATION OF STATE: The equation of state in mom4p1 follows the formu-
lation of Jackett et al. (2006), where the coefficients from McDougall et al.
(2003b) are updated to new empirical data. The code for computing density
is found in the module

mom4 /ocean core/ocean density mod.

o CONSERVATIVE TEMPERATURE: momd4pl time steps the conservative tem-
perature described by McDougall (2003) to provide a measure of heat in the
ocean. This variable is about 100 times more conservative than the tradi-
tional potential temperature variable. An option exists to set either conser-
vative temperature or potential temperature prognostic, with the alternative
temperature variable carried as a diagnostic tracer. This code for computing
conservative temperature is within the module

mom4/ocean_tracers/ocean_tempsalt amod.

e PRESSURE GRADIENT CALCULATION: The pressure gradient calculation has
been updated in mom4p1 to allow for the use of generalized vertical coordi-
nates. A description of the formulation is given in Chapter 4, and the code is
in the module

mom4 /ocean_core/ocean pressure mod.

Notably, none of the sophisticated methods described by Shchepetkin and
McWilliams (2002) are implemented in mom4p1, and so terrain following
vertical coordinates may suffer from unacceptably large pressure gradients
errors in mom4pl. Researchers are advised to perform careful tests prior to
using these coordinates.

e Partial bottom steps: mom4pl employs the partial bottom step technology
of Pacanowski and Gnanadesikan (1998) to facilitate the representation of
bottom topography, with the code in the module

mom4 /ocean_core/ocean_topog.mod.

2.5 TRACER FEATURES

Here, we outline some of the features available for tracers in mom4p1.

o Tracer advection: mom4p1 comes with the following array of tracer advec-
tion schemes.

— First order upwind; this scheme is available with either time stepping
scheme.

— Second order centred differences; this scheme is unstable for the two-
level scheme, so is only available for the three-level (leapfrog) time step-
ping.

— Fourth order centred differences; this scheme is unstable for the two-
level scheme, so is only available for the three-level (leapfrog) time step-
ping. This scheme assumes the grid is uniformly spaced (in metres),
and so is less than fourth order accurate when the grid is stretched, in
either the horizontal or vertical.
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— Sixth order centred differences; this scheme is unstable for the two-level
scheme, so is only available for the three-level (leapfrog) time stepping.
This scheme assumes the grid is uniformly spaced (in metres), and so
is less than sixth order accurate when the grid is stretched, in either
the horizontal or vertical. This scheme is experimental, and so not sup-
ported for general use.

— Quicker scheme is third order upwind biased and based on the work
of Leonard (1979). Holland et al. (1998) and Pacanowski and Griffies
(1999) discuss implementations in ocean climate models. This scheme
does not have flux limiters, so it is not monotonic. It is available with
either time stepping scheme.

- Quicker scheme in mom4p1 differs slightly from that in MOMS3, and so
the MOMS3 algorithm has also been ported to momd4p1. It is available
with either time stepping scheme.

— Multi-dimensional third order upwind biased approach of Hundsdor-
fer and Trompert (1994), with Super-B flux limiters.” The scheme is
available in mom4p1 with either time stepping scheme.

— Multi-dimensional third order upwind biased approach of Hundsdor-
fer and Trompert (1994), with flux limiters of Sweby (1984).1 Tt is avail-
able in mom4p1 with either time stepping scheme.

— The second order moment scheme of Prather (1986) has been imple-
mented in mom4pl. It can be run without limiters or with the lim-
iters suggested by Merryfield and Holloway (2003). It is available in
mom4pl with either time stepping scheme.

— The piece-wise parabolic method has been implemented in mom4pl1. It
is available in mom4p1 with either time stepping scheme.

Both of the MIT-based schemes are non-dispersive, preserve shapes in three
dimensions, and preclude tracer concentrations from moving outside of their
natural ranges in the case of a purely advective process. They are modestly
more expensive than the Quicker scheme, and it do not significantly alter
the simulation relative to Quicker in those regions where the flow is well
resolved. The Sweby limiter code was used for the ocean climate model
documented by Griffies et al. (2005).

The code for tracer advection schemes are in the module
mom4 /ocean tracers/ocean tracer advect mod.
e TRACER PACKAGES: mom4p1l comes with an array of tracer packages of use
for understanding water mass properties and for building more sophisti-

cated tracer capabilities, such as from ecosystem models. These packages
include the following.

*This scheme was ported to mom4 by Alistair Adcroft, based on his implementation in the MIT-
gem. The online documentation of the MITgem at http://mitgem. org contains useful discussions and
details about this advection scheme.

This scheme was ported to mom4 by Alistair Adcroft, based on his implementation in the MIT-
gem. The online documentation of the MITgem at http://mitgem. org contains useful discussions and
details about this advection scheme.
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— Idealized passive tracer module with internally generated initial condi-
tions. These tracers are ideal for testing various advection schemes, for
example, as well as to diagnose pathways of transport.

— An ideal age tracer, with various options for specifying the initial and
boundary conditions.

— The OCMIP2 protocol tracers (CO,, CFC, biotic).

— A new model of oceanic ecosystems and biogeochemical cycles is a state
of the art model that considers 22 tracers including three phytoplankton
groups, two forms of dissolved organic matter, heterotrophic biomass,
and dissolved inorganic species for C, N, P, Si, Fe, CaCO3 and O, cy-
cling. The model includes such processes as gas exchange, atmospheric
deposition, scavenging, N; fixation and water column and sediment
denitrification, and runoff of C, N, Fe, Oy, alkalinity and lithogenic ma-
terial. The phytoplankton functional groups undergo co-limitation by
light, nitrogen, phosphorus and iron with flexible physiology. Loss of
phytoplankton is parameterized through the size-based relationship of
Dunne et al. (2005). Particle export is described through size and tem-
perature based detritus formation and mineral protection during sink-
ing with a mechanistic, solubility-based representation alkalinity addi-
tion from rivers, CaCO3 sedimentation and sediment preservation and
dissolution.

The modules for these tracers are in the directory

mom4/ocean_tracers.

UPDATED FREEZING TEMPERATURE FOR FRAZIL: Accurate methods for com-
puting the freezing temperature of seawater are provided by Jackett et al.
(2006). These methods allow, in particular, for the computation of the freez-
ing point at arbitrary depth, which is important for ice shelf modelling.
These methods have been incorporated into the frazil module

mom4 /ocean_tracers/ocean frazil mod,

with heating due to frazil formation treated as a diagnostic tracer.

Penetration of shortwave radiation: Sweeney et al. (2005) compile a seasonal
climatology of chlorophyll based on measurements from the NASA SeaW-
IFS satellite. They used this data to develop two parameterizations of visible
light absorption based on the optical models of Morel and Antoine (1994)
and Ohlmann (2003). The two models yield quite similar results when used
in global ocean-only simulations, with very small differences in heat trans-
port and overturning.

The Sweeney et al. (2005) chlorophyll climatology is available with the dis-
tribution of mom4. The code available in the module

mom4 /ocean param/sources/ocean shortwave mod

implements the optical model of Morel and Antoine (1994). This method for
attenuating shortwave radiation was employed in the CM2 coupled climate
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model, as discussed by Griffies et al. (2005). In mom4p1, we updated the
algorithm relative to MOM4.0 by including the time dependent nature of
the vertical position of a grid cell. The MOM4.0 implementation used the
vertical position appropriate only for the case of a static ocean free surface.
There is an additional shortwave penetration module prepared at CSIRO
Marine and Atmospheric Research in Australia. This module makes a few
different assumptions and optimizations. It is supported in mom4pl by
CSIRO researchers.

2.6 SUBGRID SCALE PARAMETERIZATIONS

Here, we outline some features of the subgrid scale parameterizations available in
mom4pl.

o Horizontal friction: mom4p1 has a suite of horizontal friction schemes, such
as Smagorinsky laplacian and biharmonic schemes described in Griffies and
Hallberg (2000) and the anisotropic laplacian scheme from Large et al. (2001)
and Smith and McWilliams (2003). Code for these schemes is found in the
modules

mom4 /ocean param/mixing/ocean lapgen frictionmod
mom4 /ocean param/mixing/ocean bihgen friction mod.
o Convection: There are various convective methods available for producing
a gravitationally stable column, with the code found in the module
mom4 /ocean param/mixing/ocean_convect mod.

The scheme used most frequently at GFDL is that due to Rahmstorf (1993).
e NEUTRAL PHYSICS AND BOUNDARY REGIONS: There are new options avail-

able for treating neutral physics within boundary regions, as motivated from

ideas proposed by Ferrari and McWilliams (2007). A discussion of these

ideas is given in Chapter 15 of this document, and the code is available in
the module

mom4 /ocean param/mixing/ocean nphysics mom4pl mod,
with the MOM4.0 methods remaining in

mom4 /ocean param/mixing/oceannphysics mom4p0 mod.
e FORM DRAG: MOM4p1 has an implementation of the transformed Eulerian
mean approach of Greatbatch and Lamb (1990) and Greatbatch (1998), fol-

lowing the methods from Ferreira and Marshall (2006). This scheme is coded
in the module

mom4 /ocean param/mixing/ocean nphysics mod.

Also, an alternative form drag scheme from Aiki et al. (2004) is available in
the module

mom4 /ocean param/mixing/ocean form drag mod.
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e TIDAL MIXING PARAMETERIZATION: The tidal mixing parameterization of

Simmons et al. (2004) has been implemented as a means to parameterize the
diapycnal mixing effects from breaking internal gravity waves, especially
those waves influenced by rough bottom topography. Additionally, this
scheme has been combined with that used by Lee et al. (2006), who discuss
the importance of barotropic tidal energy on shelves for dissipating energy
and producing tracer mixing. Chapter 13 presents the model formulation,
and

mom4 /ocean_param/mixing/ocean vert_tidal mod

contains the code.

Other vertical mixing schemes: mom4p1 comes with an array of vertical mix-
ing schemes, such as the following.

- Constant background diffusivity proposed by Bryan and Lewis (1979),
with code in

mom4 /ocean param/mixing/ocean vert mix mod

- Richardson number dependent scheme from Pacanowski and Philan-
der (1981), with code in

mom4 /ocean param/mixing/ocean vert pp mod
— The KPP scheme from Large et al. (1994), with code in

mom4 /ocean param/mixing/ocean vert kpp mod

— GENERAL OCEAN TURBULENCE MODEL (GOTM): Coastal simulations
require a suite of vertical mixing schemes beyond those available in
MOM4.0. GOTM (Umlauf et al., 2005) is a public domain Fortran90 free
software supported by European scientists and used by a number of
coastal ocean modellers (see http : //www.gotm.net /). GOTM includes
many of the most sophisticated turbulence closure schemes available
today. It is continually upgraded and will provide users of mom4p1
with leading edge methods for computing vertical diffusivities and ver-
tical viscosities. GOTM has been coupled to mom4p1 by scientists at
CSIRO in Australia in collaboration with German and GFDL scientists.
The mom4pl wrapper for GOTM is

mom4 /ocean param/mixing/ocean vert gotm mod
with the GOTM source code in the directory

mom4 /ocean param/gotm.

e UPDATE OF OVERFLOW SCHEMES: mom4p1l comes with various methods of

use for parameterizing, or at least facilitating the representation of, dense
water moving into the abyss. These schemes are documented in Chapter 16,
with the following modules implementing these methods

mom4 /ocean param/mixing/ocean sigma transport.mod
mom4 /ocean param/mixing/ocean mixdownslope mod
mom4 /ocean param/sources/ocean overflow mod

mom4 /ocean_param/sources/ocean overexchange mod.
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2.7 MISCELLANEOUS FEATURES

Here, we outline some miscellaneous features of mom4p1.

REFINED OPEN BOUNDARY CONDITIONS MODULE: The open boundary con-
ditions module has been updated for mom4p1 to facilitate its use for regional
modelling. This code is found in the module

mom4 /ocean core/ocean obc mod.

and is documented in Chapter 11.

UPDATED SPURIOUS MIXING DIAGNOSTIC: Griffies et al. (2000b) describe an
empirical diagnostic method to diagnose the levels of mixing occurring in
a model. This diagnostic required some upgrades to allow for the use of
thickness weighting for time stepping the prognostic fields (see Chapter 18,
especially Section 18.3). This code is available in the module

mom4 /ocean diag/ocean tracer diag mod.

STERIC SEA LEVEL DIAGNOSTIC: We now compute the steric sea level diag-
nostically for the case when running a Boussinesq model. The formulation
is given in Chapter 20.

REVISED TEST CASES: All of the test cases have been revised as well as the
addition of some new tests. As in MOMA4.0, the tests are not sanctioned
for their physical realism. Instead, they are provided for computations and
numerical evaluation, and as starting points for those wishing to design and
implement their own research models.

UPDATED FMS INFRASTRUCTURE AND PREPROCESSING TOOLS: As with all
releases of mom4, it comes with updated infrastructure, preprocessing code,
coupling code, etc. supported by an array of scientists and engineers at
GFDL.

2.8 SHORT BIBLIOGRAPHY OF MOM4 DOCUMENTS

The following is an incomplete list of documents that may prove useful for those
wishing to learn more about the mom4 code, and some of its uses at GFDL.

The MOM3 Manual of Pacanowski and Griffies (1999) continues to contain
useful discussions about issues that remain relevant for mom4.

The MOM4 Technical Guide of Griffies et al. (2004) aims to document the
MOMA4.0 code and its main features.

The present document, Griffies (2007), presents the fundamental formulation
and model algorithms of use for the generalized vertical coordinate code
mom4pl.

The monograph by Griffies (2004) presents a pedagogical treatment of many
areas relevant for ocean climate modellers.
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o The paper by Griffies et al. (2005) provides a formulation of the ocean climate
model used in the GFDL CM2 climate model for the study of global climate
variability and change. The ocean code is based on MOM4.0.

e The paper by Gnanadesikan et al. (2006a) describes the ocean simulation
characteristics from the coupled climate model CM2.

e The paper by Delworth et al. (2006) describes the coupled climate model
CM2.

e The paper by Wittenberg et al. (2006) focuses on the tropical simulations in
the CM2 coupled climate model.

e The paper by Stouffer et al. (2006) presents some idealized climate change
simulations with the coupled climate model CM2.

2.9 THE FUTURE OF MOM

MOM has had a relatively long and successful history. The release of mom4p1
represents a major step at GFDL to move into the world of generalized vertical
coordinate models. Itis anticipated that mom4p1 will be used at GFDL and abroad
for many process, coastal, regional, and global studies. It is, quite simply, the most
versatile of the MOM codes produced to date.

Nonetheless, there are many compelling reasons to move even further along the
generalization path, in particular to include isopycnal layered models in the same
code base as z-like vertical coordinates. As discussed in Griffies et al. (2000a),
there remain many systematic problems with each vertical coordinate class, and
such warrants the development of a single code base that can examine these issues
in a controlled setting.

GFDL employs the developers of three of the world’s most successful ocean
model codes: (1) Alistair Adcroft, who developed the MITgcem, which has non-
hydrostatic and hydrostatic options; (2) Bob Hallberg, who developed the Hall-
berg Isopycnal Model, which has been used for process studies and global cou-
pled modelling, and (3) Stephen Griffies, who has been working on MOM devel-
opment. A significant step forward in ocean model code will be found by merging
various features of the MITgem, HIM, and MOM. Therefore, Adcroft, Griffies, and
Hallberg have each agreed to evolve their efforts, starting in 2007, towards the goal
of producing a GFDL Unified Ocean Model. The name of this model is yet to be
determined.



PART 1
Formulation of the ocean equations

Descriptive methods provide a foundation for physical oceanography. Indeed,
many observational oceanographers are masters at weaving a physical story of
the ocean. Once a grounding in observations and experimental science is estab-
lished, it is the job of the theorist to rationalize the phenomenology using funda-
mental principles of physics. For oceanography, these fundamentals largely rest
in the realm of classical physics. That is, for a fundamental understanding, it is
necessary to combine the descriptive, and more generally the experimental, ap-
proaches with theoretical methods based on mathematical physics. Together, the
descriptive/experimental and theoretical methods render deep understanding of
physical phenomena, and allow us to provide rational, albeit imperfect, predictions
of unobserved phenomena, including the state of future ocean climate.

Many courses in physics introduce the student to mathematical tools required to
garner a quantative understanding of physical phenomena. Mathematical methods
add to the clarity, conciseness, and precision of our description of physical phe-
nomena, and so enhance our ability to unravel the essential physical processes
involved with a phenomenon.

The purpose of this part of the document is to mathematically formulate the fun-
damental equations providing the rational basis of the mom4pl1 ocean code. It is
assumed that the reader has a basic understanding of calculus and fluid mechan-
ics.






Chapter Three

The fundamental equations

The purpose of this chapter is to formulate the kinematic and dynamic equations
which form the basis for mom4pl. Much of this material is derived from lec-
tures of Griffies (2005) at the 2004 GODAE School on Operational Oceanography.
The proceedings of this school have been put together by Chassignet and Verron
(2005), and this book contains many pedagogical reviews of ocean modelling.

3.1 FLUID KINEMATICS

The purpose of this section is to derive some of the basic equations of fluid kine-
matics applied to the ocean. Kinematics is the study of the intrinsic properties of
motion, without concern for dynamical laws. As considered here, fluid kinematics
is concerned with balances of mass for infinitesimal fluid parcels or finite regions of
the ocean. It is also concerned with the behaviour of a fluid as it interacts with ge-
ometrical boundaries of the domain, such as the land-sea and air-sea boundaries
of an ocean basin.

3.1.1 Mass conserving fluid parcels

Consider an infinitesimal parcel of seawater contained in a volume*
dV =dxdydz (3.1)
with a mass
dM = pdV. (3.2)

In these equations, p is the in situ mass density of the parcel and x = (x,y,z) is
the Cartesian coordinate of the parcel with respect to an arbitrary origin. As the
parcel moves through space-time, we measure its velocity
dx
V=——
dt
by considering the time changes in its position.f

(3.3)

*A parcel of fluid is macroscopically small yet microscopically large. That is, from a macroscopic
perspective, the parcel’s thermodynamic properties may be assumed uniform, and the methods of
continuum mechanics are applicable to describing the mechanics of an infinite number of these parcels.
However, from a microscopic perspective, these fluid parcels contain many molecules (on the order of
Avogodro’s number), and so it is safe to ignore the details of molecular interactions. Regions of a fluid
with length scales on the order of 10~3cm satisfy these properties of a fluid parcel.

tThe three dimensional velocity vector is written v = (u,w) throughout these notes, with u =
(u,v) the horizontal components and w the vertical component.
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The time derivative d/dt introduced in equation (3.3) measures time changes of
a fluid property as one follows the parcel. That is, we place ourselves in the par-
cel's moving frame of reference. This time derivative is thus directly analogous to
that employed in classical particle mechanics (Landau and Lifshitz, 1976; Marion
and Thornton, 1988). Describing fluid motion from the perspective of an observer
moving with fluid parcels affords us with a Lagrangian description of fluid mechan-
ics. For many purposes, it is useful to take a complementary perspective in which
we measure fluid properties from a fixed space frame, and so allow fluid parcels
to stream by the observer. The fixed space frame affords one with an Eulerian
description of fluid motion. To relate the time tendencies of scalar properties mea-
sured in the moving and fixed frames, we perform a coordinate transformation, the
result of which is (see Section 2.3.3 of Griffies (2004) for details)

% =0;+vVv-V, (3.4)
where d; measures time changes at a fixed space point. The transport term v - V
reveals the fundamentally nonlinear character of fluid dynamics. It is known as the
advection term in geophysical fluids, whereas it is often termed convection in the
classical fluids literature.*

It is convenient, and conventional, to formulate the mechanics of fluid parcels
that conserve mass. Choosing to do so allows many notions from classical parti-
cle mechanics to transfer over to continuum mechanics of fluids, especially when
formulating the equations of motion from a Lagrangian perspective. We thus focus
on kinematics satisfied by mass conserving fluid parcels. In this case, the mass of
a parcel changes only if there are sources within the continuous fluid, so that

d

dt
where SM) is the rate at which mass is added to the fluid, per unit mass. Mass
sources are often assumed to vanish in textbook formulations of fluid kinematics,
but they can be nonzero in certain cases for ocean modelling, so it is convenient
to carry them around in our formulation.

Equation (3.5) expresses mass conservation for fluid parcels in a Lagrangian
form. To derive the Eulerian form of mass conservation, start by substituting the
mass of a parcel given by equation (3.2) into the mass conservation equation (3.5)
to derive

In (dM) = SM) (3.5)

%lnp: ~V-v+SM), (3.6)

That is, the density of a parcel increases when the velocity field converges onto
the parcel. To reach this result, we first note the expression

d

a In(dV) =V v, (3.7)
which says that the infinitesimal volume of a fluid parcel increases in time if the
velocity of the parcel diverges from the location of the parcel. Imagine the parcel

expanding in response to the diverging velocity field.

*Convection in geophysical fluid dynamics generally refers to the rapid vertical motions that act to
stabilize fluids that are gravitationally unstable.
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Upon deriving the material evolution of density as given by equation (3.6), rear-
rangement renders the Eulerian form of mass conservation

pi+V-(pv)=pS™M, (3.8)

A comma is used here as shorthand for the partial time derivative taken at a fixed
point in space

_ 9
ot
We use an analogous notation for other partial derivatives throughout these notes.
Rewriting mass conservation in terms of the density time tendency

oy (3.9)

pi=-V-(pv)+pSM), (3.10)

reveals that at each point in the fluid, the mass density increases if the linear
momentum per volume of the fluid parcel,

p=ov, (3.11)

converges to the point.

3.1.2 Volume conserving fluid parcels

Fluids that are comprised of parcels that conserve their mass, as considered in the
previous discussion, satisfy non-Boussinesq kinematics. In ocean climate mod-
elling, it has been traditional to exploit the large degree to which the ocean fluid
is incompressible, in which case the volume of fluid parcels is taken as constant.
These fluids are said to satisfy Boussinesq kinematics.
For the Boussinesq fluid, conservation of volume for a fluid parcel leads to

d v

= In(dV) =8V, (3.12)
dt
where S() is the volume source per unit volume present within the fluid. It is
numerically the same as the mass source S(M) defined in equation (3.5). This
statetment of volume conservation is equivalent to the mass conservation state-
ment (3.5) if we assume the mass of the parcel is given by

dM = p,dV, (3.13)

where p, is a constant reference density.
Using equation (3.7) in the Lagrangian volume conservation statement (3.12)
leads to the following constraint for the Boussinesq velocity field

V.v=8W), (3.14)

Where the volume source vanishes, the three dimensional velocity field is non-
divergent

V -v =0 forBoussinesq fluids with sV =o. (3.15)
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3.1.3 Mass conservation for finite domains

Now consider a finite sized region of ocean extending from the free surface at
z = n(x,y,t) to the solid earth boundary at z = —H(x,y), and allow the fluid
within this region to respect the mass conserving kinematics of a non-Boussinesq
fluid. The total mass of fluid inside the region is given by

n
M:/dxdy /pdz. (3.16)
-H
Conservation of mass for this region implies that the time tendency
n
M= / dxdyd; / dzp (3.17)
—H

changes due to imbalances in the flux of seawater passing across the domain
boundaries, and from sources within the region.* For a region comprised of a ver-
tical fluid column, the only means of affecting the mass are through fluxes crossing
the ocean free surface, convergence of mass brought in by horizontal ocean cur-
rents through the vertical sides of the column, and sources within the column.
These considerations lead to the balance

n n
M,t:/dxdy quw+/deS<M>—v-/deu : (3.18)
“H “H

The term gy pw dx dy represents the mass flux of water (mass per unit time) cross-
ing the free surface, where p,, is the in situ density of the water crossing the sur-
face.” We provide a more detailed accounting of this flux in Section 3.1.7. Equating
the time tendencies given by equations (3.17) and (3.18) leads to a mass balance
within each vertical column of fluid

n n
04 /dzp +V~Up:quw+/dsz(M), (3.19)
—H —-H

where

n
U’ = / dzpu (3.20)
-“H

is a shorthand notation for the vertically integrated horizontal momentum per vol-
ume.

Setting density factors in the mass conservation equation (3.19) to the constant
reference density p, renders the volume conservation equation

n
e+ V-U=qu+ / dzsv) (3.21)
—H

*We assume no water enters the domain through the solid-earth boundaries.
TWater crossing the ocean surface is typically quite fresh, such as for precipitation or evaporation.
However, rivers and ice melt can generally contain a nonzero salinity.
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appropriate for a Boussinesq fluid, where fluid parcels conserve volume rather
than mass. In this equation

n
U= / dzu (3.22)
—-H

is the vertically integrated horizontal velocity. In the next section, we highlight an
important difference between mass and volume conserving fluids.

3.1.4 Evolution of ocean sea level

By introducing the vertically averaged density
n
=D / dzp (3.23)
-H

to the mass conservation equation (3.19), we can derive the following prognostic
equation for the thickness

D=H-+n (3.24)

of a fluid column

n
D= _v-UP+quw+/de8<M> _ Do Inp. (3.25)
“H

1
D

This equation partitions the time evolution for the total thickness of a column of
seawater into a set of distinct, though not fully independent, physical processes.
These processes are the following.

e Dynamical effects: The term —p~! V - U” increases the column thickness
when ocean currents cause mass to converge onto the column. We term this
a dynamical effect, as it is largely a function of the changing ocean currents.
Notably, however, if the currents have no convergence, yet the density has
a nontrivial gradient, this term remains nonzero as well. So the appellation
dynamical should be taken with this caveat. When considering a Boussinesq
fluid, the analog is the term —V - U (see the volume conservation equation
(3.21)), which vanishes only when the currents are divergence-free. Hence,
the name dynamical is precise for the Boussinesq fluid.

e Mass exchange with other components of the climate system: The term
7! gw Pw alters the column thickness when water is transported across the
ocean surface via interactions with other components of the climate system,
such as rivers, precipitation, evaporation, ice melt, etc. This effect has its
analog in Boussinesq models, in which a nonzero g, alters the volume of the
fluid.

e Mass sources: The term p—! fi’H dz p SM) increases the column thickness
whenever there are mass sources within the column, and similarly for the
Boussinesq case with volume sources.
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e Steric effect: The term —D 9; Inp adds a positive contribution to the column
thickness when the vertically averaged in situ density within a column de-
creases. Conversely, when the vertically averaged density increases, the
column thickness shrinks. We term this a steric effect, as it arises only
from changes in the ocean hydrography within a fluid column. Hydrography
changes are affected by movements of the ocean fluid (advection), small
scale processes such as mixing, or local sources. Notably, the steric term is
absent in the Boussinesq fluid’s prognostic equation for its surface height, as
can be seen by its absence in the volume conservation equation (3.21).

Anthropogenic ocean warming causes the thickness of ocean columns to ex-
pand, thus raising sea level. This effect is contained in the steric term. Changes
in the mass transport into the ocean due to glacial melt water are also important,
and likely will increase in importance as more land ice melts. Fluctuations in the
mass convergence cause fluctuations in sea level, and such may be systematic if
the surface forcing, say from the atmospheric winds, has a trend.

In many modelling studies of sea level rise due to global warming, only the global
averaged sea level is considered, as this provides a single number for comparison
between various model projections of future climate change. It is also something
that can be diagnosed in either the Boussinesq or hon-Boussinesq ocean models
used in the climate projections. Reconsidering equation (3.25), the mass budget
for the global ocean is given by

0t <ﬁ D> = <‘7w Pw>/ (3.26)
where we dropped the source term for simplicity, and
_ JdxdyF
(F) = Tdxdy (3.27)

is the global area average of a field. Without sources, the global seawater mass will
change only when there is mass entering the ocean via a nonzero g,,. Performing
the time derivative in equation (3.26) allows us to isolate the column thickness

(PDt) = —(DPs) + (qw pw)- (3.28)
Focusing on the steric effect by setting g, = 0 leads to
(PDt) = —(DDy). (3.29)

To garner an approximate sense for the effects from steric changes on the globally
averaged column thickness, we approximate this equation with

(D) ~ ~(Dd; Inp)
(D7) (3.30)
Po

These expressions are accurate to within a few percent, and they are readily diag-
nosed in either a non-Boussinesq or Boussinesq model.

~ —

3.1.5 Solid earth kinematic boundary condition

To continue with our presentation of fluid kinematics, we establish expressions
for the transport of fluid through a specified surface. The specification of such
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transport arises in many areas of oceanography and ocean model design. We
start with the simplest surface: the time independent solid earth boundary. This
surface is commonly assumed to be impenetrable to fluid.* The expression for
fluid transport at the lower surface leads to the solid earth kinematic boundary
condition.

As there is no fluid crossing the solid earth lower boundary, a no-normal flow
condition is imposed at the solid earth boundary at the depth

z=—H(x,y). (3.31)

To develop a mathematical expression for the boundary condition, we note that the
outward unit normal pointing from the ocean into the underlying rock is given by
(see Figure 3.1)

V(z+ H)

V(z+H)|
Furthermore, we assume that the bottom topography can be represented as a
continuous function H(x, ) that does not possess “overturns.” That is, we do not
consider caves or overhangs in the bottom boundary where the topographic slope
becomes infinite. Such would make it difficult to consider the slope of the bottom
in our formulations. This limitation is common for ocean models.*

A no-normal flow condition on fluid flow at the ocean bottom implies

Ay = (3.32)

v-fig =0 at z=—H(x,y).v (3.33)
Expanding this constraint into its horizontal and vertical components yields
u-VH+w=0 at z=—H(x,y). (3.34)

Furthermore, introducing a material time derivative (3.4) allows us to write this
boundary condition as
d(z+ H)
dt

Equation (3.35) expresses in a material or Lagrangian form the impenetrable na-
ture of the solid earth lower surface, whereas equation (3.34) expresses the same
constraint in an Eulerian form.

=0 at z=—H(x,y). (3.35)

3.1.6 Generalized vertical coordinates

We now consider the form of the bottom kinematic boundary condition in gener-
alized vertical coordinates. Generalized vertical coordinates provide the ocean
theorist and modeler with a powerful set of tools to describe ocean flow, which in

*This assumption may be broken in some cases. For example, when the lower boundary is a
moving sedimentary layer in a coastal estuary, or when there is seeping ground water. We do not
consider such cases here.

The three dimensional gradient operator V = (dy, 9, 0,) reduces to the two dimensional horizon-
tal operator V; = (0, dy, 0) when acting on functions that depend only on the horizontal directions.
To reduce notation clutter, we do not expose the z subscript in cases where it is clear that the horizontal
gradient is all that is relevant.

{For hydrostatic models, the solution algorithms rely on the ability to integrate vertically from the
ocean bottom to the top, uninterrupted by rock in between. Non-hydrostatic models do not employ
such algorithms, and so may in principle allow for arbitrary bottom topography, including overhangs.
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Figure 3.1 Schematic of the ocean’s bottom surface with a smoothed undulating solid earth
topography at z = —H(x, y) and outward normal direction fiyy. Undulations of
the solid earth can reach from the ocean bottom at 5000m-6000m to the surface
over the course of a few kilometers (slopes on the order of 0.1 to 1.0). These
ranges of topography variation are far greater than the surface height (see Figure
3.2). Itis important for simulations to employ numerics that facilitate an accurate
representation of the ocean bottom.

many situations is far more natural than the more traditional geopotential coordi-
nates (x, y, z) that we have been using thus far. Therefore, it is important for the
student to gain some exposure to the fundamentals of these coordinates, as they
are ubiquitous in ocean modelling today.

Chapter 6 of Griffies (2004) develops a calculus for generalized vertical coor-
dinates. Experience with these methods is useful to nurture an understanding
for ocean modelling in generalized vertical coordinates. Most notably, these co-
ordinates, when used with the familiar horizontal coordinates (x, y), form a non-
orthogonal triad, and thus lead to some relationships that may be unfamiliar. To
proceed in this section, we present some salient results of the mathematics of
generalized vertical coordinates, and reserve many of the derivations for Griffies
(2004).

When considering generalized vertical coordinates in oceanography, we always
assume that the surfaces cannot overturn on themselves. This constraint means
that the Jacobian of transformation between the generalized vertical coordinate

s=s(x,y,z1t) (3.36)

and the geopotential coordinate z, must be one signed. That is, the specific thick-
ness

0z

PR (3.37)
is of the same sign throughout the ocean fluid. The name specific thickness arises
from the property that

dz =zsds (3.38)
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is an expression for the thickness of an infinitesimal layer of fluid bounded by two
constant s surfaces.

Deriving the bottom kinematic boundary condition in s-coordinates requires a
relation between the vertical velocity component used in geopotential coordinates,
w = dz/dt, and the pseudo-velocity component ds/d¢. For this purpose, we refer
to some results from Section 6.5.5 of Griffies (2004). As in that discussion, we
derive the isomorphic relations

z2=(0t+u-Vs+$0s)z (3.39)
§=(0r+u-V,+20;)s, (3.40)
where
., dz
Z = T (3.41)
. ds
§ = a (3.42)

are useful shorthands for the vertical velocity components, motivated from similar
notation used in classical particle mechanics. Note that the partial time derivative
appearing in each of the expressions is taken with the corresponding space vari-
ables held fixed. That is, 0; in equation (3.39) is taken with s held fixed, whereas
0 in equation (3.40) is taken with z held fixed.

Rearrangement of equations (3.39) and (3.40) leads to

t=z,(d/dt—d —u-V,)s. (3.43)

This expression is relevant when measurements are taken on surfaces of constant
geopotential, or depth. To reach this result, we made use of the triple product
identities

Zt= —S4tZs (3.44)
Zy = —SxZg (3.45)
Z,y = _s,y Z,S‘ (3.46)

A derivation of these identities is given in Section 6.5.4 of Griffies (2004). These
relations should be familiar to those having studied thermodynamics, where the
analogous expressions are known as the Maxwell relations (Callen, 1985).

We now apply relation (3.43) to the ocean bottom, which is generally not a sur-
face of constant depth. It is thus necessary to transform the constant depth gra-
dient V to a horizontal gradient taken along the bottom. To do so, proceed as
in Section 6.5.3 of Griffies (2004) and consider the time-independent coordinate
transformation

(x,7,z,t) = (x,y,—H(x,y),t). (3.47)

The horizontal gradient taken on constant depth surfaces, V., and the horizontal
gradient along the bottom, V=, are thus related by

Vz=V,—(VH)O0.. (3.48)
Using this result in equation (3.43) yields
s;(w+u-VH)=(d/dt—0;—u-Vz)s at z=—H. (3.49)



30 CHAPTER 3

The left hand side vanishes due to the kinematic boundary condition (3.34), which
then leads to

ds/dt = (0t +u-Vz)s at s=s(x,y,z=—H(x,y),t). (3.50)

The value of the generalized coordinate at the ocean bottom can be written in the
shorthand form

Spot(%, ¥, ) =s(x,y,z= —H, t) (3.51)

which leads to

d (s — Spot)
dt

This relation is analogous to equation (3.35) appropriate to z-coordinates. Indeed,
it is actually a basic statement of the impenetrable nature of the solid earth lower
boundary, which is true regardless the vertical coordinates.

The various mathematical steps that led to the very simple result (3.52) could
have been dispensed with if we already understood some notions of generalized
vertical coordinates. Nonetheless, the steps introduced some of the formalism re-
quired to work with generalized vertical coordinates, and as such provide a useful
testing ground for later manipulations where the answer is less easy to anticipate.
This strategy is highly recommended to the student working with new formalisms.
That is, first test your mathematical skills with problems where the answer is either
known, or can be readily judged correct with basic physical understanding. Af-
ter garnering experience and confidence, one may then approach genuinely new
problems using the methods.

=0 at s = Spot. (3.52)

3.1.7 Upper surface kinematic condition

To formulate budgets for mass, tracer, and momentum in the ocean, we consider
the upper ocean surface to be a time dependent permeable membrane through
which precipitation, evaporation, ice melt, and river runoff* pass. The expression
for fluid transport at the upper surface leads to the upper ocean kinematic bound-
ary condition.

To describe the kinematics of water transport into the ocean, it is useful to intro-
duce an effective transport through a smoothed ocean surface, where smoothing
is performed via an ensemble average. We assume that this averaging leads to a
surface absent overturns or breaking waves, thus facilitating a mathematical de-
scription analogous to the ocean bottom just considered. The vertical coordinate
takes on the value

z=n(x,y,t) (3.53)
at this idealized ocean surface.

*River runoff generally enters the ocean at a nonzero depth rather than through the surface. Many
global models, however, have traditionally inserted river runoff to the top model cell. Such can become
problematic numerically and physically when the top grid cells are refined to levels common in coastal
modelling. Hence, more applications are now considering the input of runoff throughout a nonzero
depth. Likewise, sea ice can melt at depth, thus necessitating a mass transport to occur within the
ocean between the liquid and solid water masses.
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We furthermore assume that density of the water crossing the ocean surface
pw is a function of the temperature, salinity, and pressure. There are generally
different water densities for precipitation, evaporation, runoff, and ice melt. Such
level of detail is generally not considered, and we make approximations below. For
now, we note that the mass transport crossing the ocean surface can be written

(MASS/TIME) THROUGH SURFACE =
—dA, ﬁn-<ﬁpp,0p + fig E pg + iR Rpr + 1y I,O|).

In this expression, fip P pp is the mass per time per area of precipitation oriented
in the direction specified by fip, where pp is the mass density of the precipitation
and P is the volume per time per area of precipitation. Likewise, fig E pg is the
evaporative mass flux, fig R pr is the river mass flux, and f, I p, is the ice melt
mass flux. The unit normal

(3.54)

a - V(z=n)
T V(z—n)
points from the ocean surface at z = 7 into the overlying atmosphere (see Figure
3.2). Finally, the area element dA;; measures an infinitesimal area element on the
ocean surface z = n, and it is given by (see Section 20.13.2 of Griffies (2004))

dA, = |V(z—n)|dxdy. (3.56)

(3.55)

f

w N
n
z=N \ n

X,y

Figure 3.2 Schematic of the ocean’s upper surface with a smoothed undulating surface at
z = n(x, y,t), outward normal direction iy, and normal direction fiyy orienting
the passage of water across the surface. Undulations of the surface height are
on the order of a few metres due to tidal fluctuations in the open ocean, and or-
der 10m-20m in certain embayments (e.g., Bay of Fundy in Nova Scotia). When
imposing the weight of sea ice onto the ocean surface, the surface height can de-
press even further, on the order of 5m-10m, with larger values possible in some
cases. It is important for simulations to employ numerical schemes facilitating
such wide surface height undulations.

We now make a common assumption about the orientation of the water trans-
ported across the surface. Namely, precipitation generally enters the ocean, so
that we write

Phy-hp~ —P (3.57)

since fi, -fip ~ —1. We make similar approximations for the other mass flux
components, with the conventions that P > 0 is the volume per time per area
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of precipitation entering the ocean, E > 0 is the evaporation leaving the ocean,
R > 0 is the river runoff entering the ocean, and I > 0 is the ice melt entering the
ocean (signs are reversed on each of these fluxes for cases where water fluxes
are in opposite directions). Additionally, for notational convenience, we assume
the density of the water transported across the surface is generically written p,,.
Hence, the mass flux takes the more compact form

(MASS/TIME) THROUGH SURFACE = (P — E+ R+ 1) py dA;. (3.58)
We next exploit the assumption that the ocean surface has no overturns. In this
case, we can define
gwdA = (P—E+R+1I)dA,, (3.59)
where
dA =dxdy (3.60)

is the horizontal projection of the surface area element dA;,. The volume per time
per horizontal area of fluid crossing the ocean surface is therefore defined by

_ (P-E+R+1I)dA,
w = dA
_ (VOLUME/TIME) THROUGH FREE SURFACE

HORIZONTAL AREA UNDER FREE SURFACE

(3.61)

This is the surface water flux that appears in ocean model budgets for mass, tracer,
and momentum. The assumptions leading up to this simple expression can be
readily dropped in cases where more information is available (e.g., separate den-
sities for the precipitation, evaporation, runoff, ice melt). Indeed, in realistic climate
models, these densities may be available. However, for purposes of mathemati-
cal formulation, it is more convenient to employ the terse expression derived here.
Note that in Section 3.4.7, we derive an alternative expression (3.152) for g, which
connects it to the dia-surface velocity component discussed in Section 3.1.8.

To develop the surface kinematic boundary condition, return to the expression
(3.19) for mass conservation, rewritten here for completeness

n n n
0t /dzp +V- /dzpu :quw—i—/dsz(M). (3.62)
—H —H —H
Next, we perform the derivative operations on the integrals, keeping in mind Leib-

nitz’'s Rule when differentiating an integral. The first step of the derivation leads
to

n
P (@ +u-V) g+ [P VH uloep+ [ dz[ps+ V- (pu)] =
—H
; (3.63)
Pw gw + / deS(M)
“H

The Eulerian mass conservation relation (3.8) and bottom kinematic boundary
condition (3.34) render the surface kinematic boundary condition

‘p(at—i-u-V)n:quW—i—pw at z:n.‘ (3.64)
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This relation can also be written in the material form

Contrary to the solid earth condition (3.35), where z 4+ H is materially constant,

permeability of the ocean surface leads to a nontrivial material evolution of z — 7.
To derive the analogous s-coordinate boundary condition, we proceed as for the

bottom in Section 3.1.6. Here, the coordinate transformation is time dependent

(x,7,z1t) = (x,y,n(x,y,t),t). (3.66)

The horizontal gradient and time derivative operators are therefore related by
Vz=V.:+(Vn)o, (3.67)
07 = 0t + 1, 0-. (3.68)

Hence, the relation (3.43) between vertical velocity components takes the following
form at the ocean surface

w=2zs(d/dt—0;—u-Vz)s+ (0;+u-V)n at z=n. (3.69)
Substitution of the z-coordinate kinematic boundary condition (3.64) leads to

where sop = s(x,y,z = n,t) is the value of the generalized vertical coordinate
at the ocean surface. Reorganizing the result (3.70) leads to the material time
derivative form

d(s—s
oz, (%) — pww At s =sep (3.71)

which is analogous to the z-coordinate result (3.65). Indeed, it can be derived
trivially by noting that dz/dt = z,ds/df. Even so, just as for the bottom kine-
matic boundary condition considered in Section 3.1.6, it is useful to have gone
through these manipulations to garner experience and confidence with the for-
malism. Such confidence is of particular use in the next section focusing on the
dia-surface flux.

3.1.8 Dia-surface transport

A surface of constant generalized vertical coordinate, s, is of importance when
establishing the balances of mass, tracer, and momentum within a layer of fluid
whose upper and lower bounds are determined by surfaces of constant s. Fluid
transport through this surface is said to constitute the dia-surface transport. This
transport plays a fundamental role in generalized vertical coordinate modelling.
At an arbitrary point on a surface of constant generalized vertical coordinate
(see Figure 3.3), the flux of fluid in the direction normal to the surface is given by

SEAWATER FLUX IN DIRECTION A = v - fi, (3.72)
with
A= Vs|Vs| ™! (3.73)
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the surface unit normal direction. Introducing the material time derivative ds/dt =
s+ v - Vs leads to the equivalent expression

v-h=|Vs|7!(d/dt —d;)s. (3.74)

That is, the normal component to a fluid parcel's velocity is proportional to the
difference between the material time derivative of the surface and its partial time
derivative.

Since the surface is generally moving, the net flux of seawater penetrating the
surface is obtained by subtracting the velocity of the surface v in the f direction
from the velocity component v - i of the fluid parcels

FLUX OF SEAWATER THROUGH SURFACE = fi - (v — v("®")). (3.75)

The velocity v(™") is the velocity of a reference point fixed on the surface, and it is
written

v(reh) — y(reh) 4 o (ref) 5 (3.76)

Since the reference point remains on the same s = const surface, ds/dt = 0 for
the reference point. Consequently, we can write the vertical velocity component
w(ref) as

wl™) = —z (0 +ul®).V,)s, (3.77)
where equation (3.43) was used with ds/d¢ = 0. This result then leads to

(ref) ref)

Vs\_l,

n-v

(3.78)

= _S,t

which says that the normal component of the surface’s velocity vanishes when the
surface is static, as may be expected. When interpreting the dia-surface velocity
component below, we find it useful to note that relation (3.78) leads to

2sVs-vie) =z, (3.79)

To reach this result, we used the identity s ; z s = —z, with z; the time tendency
for the depth of a particular constant s surface.

Expression (3.78) then leads to the following expression for the net flux of sea-
water crossing the surface

A (v—vl®)) = |Vs|71 (s +v-V)s

(3.80)
= |Vs|~tds/dt.

Hence, the material time derivative of the generalized surface vanishes if and only
if no water parcels cross it. This important result is used throughout ocean theory
and modelling. It measures the volume of seawater crossing a generalized surface,
per time, per area. The area normalizing the volume flux is that area dA ) of an
infinitesimal patch on the surface of constant generalized vertical coordinate with
outward unit normal fi. This area can be written (see equation (6.58) of Griffies
(2004))

dA(ﬁ) = ‘Z,s VS‘ dA, (381)
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Figure 3.3 Surfaces of constant generalized vertical coordinate living interior to the ocean.
An upward normal direction fi is indicated on one of the surfaces. Also shown is

the orientation of a fluid parcel’s velocity v and the velocity v(reh) of a reference
point living on the surface.

where
dA =dxdy (3.82)

is the horizontal projection of the area element. Hence, the volume per time of fluid
passing through the generalized surface is

(VOLUME/ TIME) THROUGH SURFACE = fi - (v — v{"™)) dA 4

(3.83)
=|zs| (ds/dt) dxdy,
and the magnitude of this flux is
- (v— ) dA 4| = [ dxdy. (3.84)
We introduced the expression
w) =z %, (3.85)

which measures the volume of fluid passing through the surface, per unit area
dA = dx dy of the horizontal projection of the surface, per unit time. That is,

- (v—vleh) dA )

dA (3.86)
(VOLUME /TIME) OF FLUID THROUGH SURFACE

~ AREA OF HORIZONTAL PROJECTION OF SURFACE

()

The quantity w(®) is called the dia-surface velocity component. It is directly anal-
ogous to the fresh water flux gy, defined in equation (3.59), which measures the
volume of freshwater crossing the ocean surface, per unit time per horizontal area.
To gain some experience with the dia-surface velocity component, it is useful to
write it in the equivalent forms

w) =z, ds/dt
=24 Vs-(v—v(e))
=(2—Vsz) - v—2z,

’

=w—(0;+u-Vs)z

(3.87)
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where the penultimate step used the identity (3.79), and where
S = VSZ

3.88
=—z,V,s ( )

is the slope of the s surface as projected onto the horizontal directions. For ex-
ample, if the slope vanishes, then the dia-surface velocity component measures
the flux of fluid moving vertically relative to the motion of the generalized surface.
When the surface is static and flat, then the dia-surface velocity component is
simply the vertical velocity component w = dz/dt.

The expression (3.85) for w(®) brings the material time derivative (3.4) into the
following equivalent forms

d 0 0
0 ds /0
0 0
= —_— . (S) -
(at>s+“ Vst w <az)’ (3.91)
where
0s = 2,50, (3.92)

relates the vertical coordinate partial derivatives. The form given by equation
(3.91) motivates some to refer to w(®) as a vertical velocity component that mea-
sures the rate at which fluid parcels penetrate the surface of constant generalized
coordinate (see Appendix A to McDougall (1995)). One should be mindful, how-
ever, to distinguish w®) from the generally different vertical velocity component
w = dz/dt, which measures the water flux crossing constant geopotential sur-
faces.

We close with a few points of clarification for the case where no fluid parcels
cross the generalized surface. Such occurs, in particular, in the case of adiabatic
flows with s = p an isopycnal coordinate. In this case, the material time derivative
(3.91) only has a horizontal two-dimensional advective component u - V. This
result should not be interpreted to mean that the velocity of a fluid parcel is strictly
horizontal. Indeed, it generally is not, as the form (3.89) should make clear. Rather,
it means that the transport of fluid properties occurs along surfaces of constant s,
and such transport is measured by the convergence of horizontal advective fluxes
as measured along surfaces of constant s. We revisit this point in Section 3.4.2
when discussing tracer transport (see in particular Figure 3.5).

3.2 MATERIAL TIME CHANGES OVER FINITE REGIONS

In the following sections, we focus on the mass, tracer, and momentum budgets
formulated over a finite domain. The domain, or control volume, of interest is that
of an ocean model grid cell. The budget for a grid cell is distinct from budgets for
infinitesimal mass conserving Lagrangian fluid parcels moving with the fluid. Mass
conserving fluid parcels form the fundamental system for which the budgets of
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mass, tracer, momentum, and energy are generally formulated from first principles
(see, for example, chapters 3-5 in Griffies, 2004). Grid cell budgets are then
derived from the fundamental parcel budgets.

The grid cells of concern for mom4pl have vertical sides fixed in space-time,
but with the top and bottom generally moving. In particular, the top and bottom
either represent the ocean top, ocean bottom, or a surface of constant generalized
vertical coordinate. We furthermore assume that at no place in the fluid do the
top or bottom surfaces of the grid cell become vertical. This assumption allows for
a one-to-one relation to exist between geopotential depth z and the generalized
vertical coordinate s introduced in Section 3.1.6 (i.e., the relation is invertible).

To establish the grid cell budget, we integrate the budget for mass conserving
fluid parcels over the volume of the cell. This section is focused on the mathemat-
ics required for integrating the density weighted material time derivative acting on
an arbitrary field

S = (o) + V- (ov ) (3.93)
We start with the partial time derivative on the right hand side, and introduce Carte-
sian coordinates (x, y, z) for the purpose of performing the grid cell integral

///dV(PL’)),tZ///dxdydz(plp),t
= //dxdy /szZ(pw),t

://.dxdy —(pY)20: 20+ (p)10: 21 + 0 /dZ(PlP)

(3.94)

The second equality follows by noting that the horizontal extent of a grid cell re-
mains static, thus allowing for the horizontal integral to be brought outside of the
time derivative. In contrast, the vertical extent has a time dependence, which ne-
cessitates the use of Leibniz's Rule. We now use equation (3.44)

Zp=—51Zs¢ (3.95)

which relates time tendencies of the depth of a generalized surface to time ten-

dencies of the surface itself. Equation (3.78) is next used to write
TR (3.96)
=24 |Vs|a-v(e), .

in which we introduced the reference velocity v("®") for a point sitting on the gen-
eralized surface. Finally, recall equation (3.81), which relates the area element on
the surface to the horizontal projection dA = dx dy of the surface

dA) = |zs Vs|dA. (3.97)
Introducing this area then renders

zpdA=n-vIdA (3.98)
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This equation relates the time tendency of the depth of the generalized surface
to the normal component of the velocity at a point on the surface. The two are
related through the ratio of the area elements. This result is now used for the top
and bottom boundary terms in relation (3.94), yielding

// AV (o) =0 (// .pdVd)) / dA g - v (o). (3.99)

Hence, the domain integrated Eulerian time tendency of the density weighted field
equals the time tendency of the density weighted field integrated over the domain,
minus a boundary integral over the domain arising from the general time depen-
dence of the domain.

The next step needed for volume integrating the density weighted material time
derivative in equation (3.93) involves the divergence of the density weighted field

// AVV - (pvip) = /dA a-v(py), (3.100)

which follows from Gauss’ Law. Combining this result with equation (3.99) leads
to the relation

// dV —at (// pth,l)) /dA (v — ) (py).| (3.101)

Hence, the mass weighted grid cell integral of the material time derivative of a
field is given by the time derivative of the mass weighted field integrated over the
domain, plus a boundary term that accounts for the transport across the domain
boundaries, with allowance made for moving domain boundaries. The manipula-
tions leading to this result focused on an interior grid cell. The result, however,
holds in general for a cell that abuts either the ocean surface or ocean bottom.
For the ocean bottom, the boundary term vanishes since the bottom has a zero
reference velocity, and there is no normal flow of fluid across the bottom. For the
ocean surface, we employ relation (3.152) which defines the dia-surface trans-
port of mass across the ocean surface in a manner analogous to the dia-surface
transport (3.86) across an interior surface.

3.3 BASICS OF THE FINITE VOLUME METHOD

The finite volume method of formulating the discrete equations of an ocean model
is relatively new, having been incorporated to the ocean modelling literature only
since the late 1990’s. The work of Adcroft et al. (1997) is a canonical example
of how this method can be used to garner a better representation of the solid
earth boundary. In this section, we briefly outline the basis for this method. The
interested reader may wish to look at chapter 6 of the book by Hirsch (1988) for a
more thorough introduction, or one of the growing number of monographs devoted
exclusively to the method.

The general equations of fluid mechanics can be represented as conservation
equations for scalar quantities (e.g., seawater mass and tracer mass) and vector
guantities (e.g., linear momentum). As just detailed in Section 3.2, the conserva-
tion law for a scalar W over an arbitrary fluid region can be put in the form

3 <// "PdV) - —// dA(ﬁ)ﬁ-F—i—'///SdV. (3.102)
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The volume integral is taken over an arbitrary fluid region, and the area integral
is taken over the bounding surface to that volume, with outward normal i. The
flux F penetrates the surface and acts to alter the scalar, whereas internal sources
S contribute to changes in the scalar throughout the interior of the domain. The
budget for the vector linear momentum can be written in this form, with the addition
of body forces that act similar to the source term written here (see Section 3.6).
Fundamental to the finite volume method is that the fluxes contribute only at the
boundary to the domain, and not within the interior as well. Hence, the domain can
be subdivided into arbitrary shapes, with budgets over the subdivisions summing
to recover the global budget.

A discrete finite volume analog to equation (3.102), for a region labeled with the
integer |, takes the form

0 (Vi ¥y) = — Z (A(ﬁ) n-F)+V; S (3.103)
sides

Quantities with the integer | subscript refer to the discrete analogs to the contin-
uum fields and the geometric factors in equation (3.102). In particular, we define
the discrete finite volume quantities

v, = / / dv (3.104)

Y, = % (3.105)
_ J/fdvs

Again, it is due to the conservation form of the fundamental fluid dynamic equation
(3.102) that allows for a straightforward finite volume interpretation of the discrete
equations. Notably, once formulated as such, the problem shits from fundamentals
to details, with details differing on how one represents the subgrid scale behaviour
of the continuum fields. This then leads to the multitude of discretization methods
available for such processes as transport, time stepping, etc. In the following,
we endeavour to write the fluid equations of the ocean in the conservation form
(3.102). Doing so then renders a finite volume framework for the resulting discrete
or semi-discrete equations.

When working with nonBoussinesq budgets, the finite volume interpretation ap-
plies directly to the tracer mass per volume, p C, rather than to the tracer concen-
tration C. The same applies to the linear momentum per volume, p v, rather than to
the velocity v. That is, the finite volume model carries the discrete fields pj, (0 C);
and (pv)j, defined as

p; = % (3.107)
(pC) = % (3.108)
(ov); = % (3.109)

As we will see in the discussions in Sections 3.4 and 3.6, we actually work with
a slightly modified finite volumve suite of variables, whereby the finite volume in-
terpretation applies to the seawater mass per horizontal area, the tracer mass per
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horizontal area and linear momentum per horizontal area

(dzp); = % (3.110)
(dzpC)j = % (3.111)
(dzpv), = ffd?f#, (3.112)

where dz is the thickness of a grid cell, and dA = dx dy is the horizontal projection
of its area. The inclusion of thickness facilitates the treatment of grid cells whose
thickness is a function of time, such as in mom4p1. Note that to reduce notational
clutter, we employ the same symbol for the continuum field as for the discrete, so
we drop the | subscript in the following.

3.4 MASS AND TRACER BUDGETS OVER FINITE REGIONS

The purpose of this section is to extend the kinematics discussed in the previous
sections to the case of mass and tracer budgets for finite domains within the ocean
fluid. In the formulation of ocean models, these domains are thought of as discrete
model grid cells.

3.4.1 General formulation

The tracer concentration C represents a mass of tracer per mass of seawater
for material tracers such as salt or biogeochemical tracers. Mathematically, this
definition means that for each fluid parcel,
mass of tracer

mass of seawater

pcdV

pdV '’
where p¢ is the mass density of tracer within the fluid parcel. In addition to ma-
terial tracers, we are concerned with a thermodynamical tracer that measures the
heat within a fluid parcel. In this case, C is typically taken to be the potential
temperature. However, the work of McDougall (2003) prompts us to consider a
modified temperature known as conservative temperature, which more accurately
measures the heat within a fluid parcel and is transported, to within a very good
approximation, in a manner directly analogous to material tracers.

Given these considerations, the total tracer mass within a finite region of seawa-

ter is given by the integral.

C=
(3.113)

tracer mass in a region = // pcdV

- ///deV.

Correspondingly, the evolution of tracer mass within a Lagrangian parcel of mass
conserving fluid is given by (see Section 5.1 of Griffies, 2004)
dC

g =Vt pS©), (3.115)

(3.114)
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where S(©) is a tracer source in the region, with units of tracer concentration per
time. The tracer flux J arises from subgrid scale transport of tracer in the absence
of mass transport. Such transport in mom4p1l consists of diffusion and/or unre-
solved advection. As this flux is not associated with mass transport, it vanishes
when the tracer concentration is uniform, in which case the tracer budget reduces
to the mass budget (3.5).

Now develop a regional budget for tracer mass over a grid cell. For this pur-
pose, we apply the general result (3.101) relating the material time derivative to a
regional budget, to render

o <// dev> :///S(C)pdV—//dA(ﬁ)ﬁ~[(v—vref)pC—i-H. (3.116)

Again, the left hand side of this equation is the time tendency for tracer mass within
the finite sized grid cell region. When the tracer concentration is uniform, the SGS
flux vanishes, in which case the tracer budget (3.116) reduces to the finite domain
mass budget

o (/// pdV) = /// SM pdv — // dAga-[(v—v¥)pl.  (3117)

In addition to the tracer flux J, it is convenient to define the tracer concentration
flux F via

J =pF, (3.118)

where the dimensions of F are velocity x tracer concentration.

In a manner analogous to our definition of a dia-surface velocity component in
Section 3.1.8, it is useful to introduce the dia-surface SGS flux component. For
this purpose, consider the tracer mass per time crossing a surface of constant
generalized vertical coordinate, where this transport arises from SGS processes.
Manipulations similar to those used to derive the dia-surface velocity component
lead to

(SGS tracer mass through surface) /(time) = dA ) fi-J
=zsVs-Jdxdy (3.119)
= (2—S)-Jdxdy,

where S is the slope vector for the generalized surface defined in equation (3.88).
We are therefore led to introduce the dia-surface SGS tracer flux

dA(ﬁ)ﬁ-]
dA

=z5Vs-]

=(2-5)-],

J6) =
(3.120)

where dA = dxdy is the horizontal cross-sectional area. In words, ) is the
tracer mass per time per horizontal area penetrating surfaces of constant gen-
eralized vertical coordinate via processes that are unresolved by the dia-surface
velocity component w').



42 CHAPTER 3

Grid cell k X,y

Figure 3.4 Schematic of an ocean grid cell labeled by the vertical integer k. Its sides are
vertical and oriented according to X and ¥, and its horizontal position is fixed
in time. The top and bottom surfaces are determined by constant generalized
vertical coordinates s;_1 and sy, respectively. Furthermore, the top and bottom
are assumed to always have an outward normal with a nonzero component in
the vertical direction 2. That is, the top and bottom are never vertical. We take
the convention that the discrete vertical label k increases as moving downward
in the column, and grid cell k is bounded at its upper face by s = s;_1 and lower
face by s = sy.

3.4.2 Budget for an interior grid cell

Consider the budget for a region bounded away from the ocean surface and bot-
tom, such as that shown in Figure 3.4. We have in mind here a grid cell within a
discrete numerical model. There are two assumptions which define a grid cell for
our purposes.

e The sides of the cell are vertical, so they are parallel to z and aligned with the
horizontal coordinate directions (%, ). Their horizontal positions are fixed in
time.

e The top and bottom of the cell are defined by surfaces of constant gener-
alized vertical coordinate s = s(x, y,z,t). The generalized surfaces do not
overturn, which means that s , is single signed throughout the ocean.

These assumptions lead to the following results for the sides of the grid cell

TRACER MASS ENTERING CELL WEST FACE = // dydz (upC+pF¥) (3.121)
X'le

TRACER MASS LEAVING CELL EAST FACE = — // dydz (upC+pF") (3.122)
X:.Xz

where x; < x < x, defines the domain boundaries for the east-west coordinates.*
Similar results hold for the tracer mass crossing the cell in the north-south direc-

*We use generalized horizontal coordinates, such as those discussed in Griffies (2004). Hence,
the directions east, west, north, and south may not correspond to the usual geographic directions.
Nonetheless, this terminology is useful for establishing the budgets, whose validity is general.



THE FUNDAMENTAL EQUATIONS 43
tions. At the top and bottom of the grid cell
TRACER MASS ENTERING CELL BOTTOM FACE = // dxdyp (w(S> C+ F(S)) (3.123)

S=S

TRACER MASS LEAVING CELL TOP FACE = — / dxdy p (w®) C + F©)), (3.124)
S=5k-1

To reach this result, we used a result from Section 3.1.8 to write the volume flux
passing through the top face of the grid cell

dAg - (v —v®) =) dxdy, (3.125)

with w(®) = z 5 ds/dt the dia-surface velocity component. A similar relation holds
for the bottom face of the cell. The form of the SGS flux passing across the top
and bottom is correspondingly given by

dAg -] =] dxdy, (3.126)

which follows from the general expression (3.120) for the dia-surface tracer flux.

In a model using the generalized coordinate s for the vertical, it is sometimes
convenient to do the vertical integrals over s instead of z. For this purpose, recall
that with z ¢ single signed, the vertical thickness of a grid cell is given by equation
(3.38), repeated here for completeness

dz =zsds. (3.127)

Bringing these results together, and taking the limit as the volume of the cell in
(x,y,s) space goes to zero (i.e., dx dy ds — 0) leads to

01(2spC) =24pS'®) — V- [zsp(uC+F)] —ds[p(w® C+FE)]  (3.128)

Notably, the horizontal gradient operator V, is computed on surfaces of constant
s, and so it is distinct generally from the horizontal gradient V, taken on surfaces
of constant z.

As indicated at the end of Section 3.3, we prefer to work with thickness weighted
quantities, given the general time dependence of a model grid cell in mom4pl.
Hence, as an alternative to taking the limit as dx dy ds — 0, consider instead the
limit as the time independent horizontal area dx dy goes to zero, thus maintaining
the time dependent thickness dz = z s ds inside the derivative operators. In this
case, the thickness weighted tracer mass budget takes the form

91(dzpC) = dzpS© — V- [dzp(uC+F)] — [p(w® C+ FO)]s—g, , + [p (@ C+ FO)]ss,.
(3.129)

Similarly, the thickness weighted mass budget is

dr(dzp) = dzpS™ — V- (dzpu) — (pw®)ss, | + (pw)s=s,.|  (3.130)

In these relations, SM) is a mass source with units of inverse time that, for self-
consistency, must be related to the tracer source via

SM = s (c=1). (3.131)
Additionally, the SGS tracer flux vanishes with a uniform tracer
F(C=1)=0. (3.132)
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Note that by setting the tracer concentration in equation (3.129) to a uniform con-
stant, SGS transort fluxes vanish, thus revealing the mass conservation budget.
This procedure for deriving the mass budget from the tracer budget follows triv-
ially from the definition of the tracer concentration given by equation (3.113). It
represents a compatibility condition between the discrete budgets, and this condi-
tion is critical to maintain within a numerical model in order to respect tracer and
mass conservation in the simulation. We have more to say about the compatibility
condition in Section 3.4.8.

One reason that the thickness weighted budget given by equation (3.129) is
more convenient than equation (3.128) is that equation (3.129) expresses the
budget in terms of the grid cell thickness dz, rather than the specific thickness
z s. Nonetheless, this point is largely one of style and convenience, as there is no
fundamental reason to prefer one form over the other for purposes of developing
the discrete equations of an ocean model.

3.4.3 Fresh water budget

Seawater is comprised of freshwater with a relatively fixed ratio of various salts.
It is common to consider the budget for the concentration of these salts, which is
described by the tracer equation (3.129). As a complement, it may be of interest
to formulate a budget for freshwater. In this case, we consider the mass of fresh
water within a fluid parcel

mass of fresh water = mass of seawater — mass of salt

=pdV (1-25) (3.133)
=pdV W,
where S is the salinity (mass of salt per mass of seawater), and
W=1-S (3.134)

is the mass of fresh water per mass of seawater. Results from the tracer budget
considered in Section 3.4.2 allow us to derive the following budget for fresh water
within an interior ocean model grid cell

dr(dzpW) =dzp(SM —8)) — V. [dzp(uW — F)]

(3.135)
—[p(w® W — p(S))]s:SH +[p(w® W — F(s))]s:sk-

In these relations, the SGS tracer flux components F and F(®) are those for salt,
and S5 is the salt source. Equation (3.135) is very similar to the tracer equation
(3.129), with modified source term and negative signs on the SGS flux compo-
nents.

3.4.4 The ideal age tracer

Thiele and Sarmiento (1990) and England (1995) consider an ideal age tracer for
Boussinesq fluids. We consider the generalization here to nonBoussinesq fluids,
in which

dA

PtV I= pSHA), (3.136)
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where the age tracer A has dimensions of time and it is initialized globally to zero.
It is characterized by the dimensionless clock source S(4), which takes the values
A 0ifz= n
S! >_{ 1 itz < (3.137)
In a finite difference model, the boundary condition at z = 7 is applied at the top
grid cell k = 1. In mom4pl, various age tracers can be defined that differ by the
region that their boundary condition is set to zero. Given these prescriptions, A
measures the age, in units of time, that a water parcel has spent away from the
region where it was set to zero. Therefore, visual maps of A are useful to deduce
such physically interesting properties as ventilation times.

From equation (3.129), the budget for tracer mass per area in a grid cell is given
by

0:(dzpA) =dzpS®W — V- [dzp(uA+F)]

o (@ A+ EOieg,, + o (0 A FO)iy,.
In practice, the clock source is added to the age tracer at the very end of the time
step, so that it is implemented as an adjustment process. In this way, we remove
the ambiguity regarding the time step to evaluate the p dz factor that multiplies the
age source.

(3.138)

3.4.5 Budgets without dia-surface fluxes

To garner some experience with tracer budgets, it is useful to consider the special
case of zero dia-surface transport, either via advection or SGS fluxes, and zero
tracer/mass sources. In this case, the thickness weighted mass and tracer mass
budgets take the simplified form
0¢(dzp) =— V- (dzpu) (3.139)
0:(dzpC) =—Vs-[dzp(uC+F). (3.140)
The first equation says that the time tendency of the thickness weighted density
(mass per area) at a point between two surfaces of constant generalized verti-
cal coordinate is given by the horizontal convergence of mass per area onto that
point. The transport is quasi-two-dimensional in the sense that it is only a two-
dimensional convergence that determines the evolution. The tracer equation has
an analogous interpretation. We illustrate this situation in Figure 3.5. As empha-
sized in our discussion of the material time derivative (3.91), this simplification
of the transport equation does not mean that fluid parcels are strictly horizontal.
Indeed, such is distinctly not the case when the surfaces are moving.

A further simplification of the mass and tracer mass budgets ensues when con-
sidering adiabatic and Boussinesq flow in isopycnal coordinates. We consider p
now to represent the constant potential density of the finitely thick fluid layer. In
this case, the mass and tracer budgets reduce to

0¢(dz) =—V, - (dzu) (3.141)

0t(dzC) = -V, - [dz (uC+F)]. (3.142)

Equation (3.141) provides a relation for the thickness of the density layers, and

equation (3.142) is the analogous relation for the tracer within the layer. These

expressions are commonly used in the construction of adiabatic isopycnal models,
which are often used in the study of geophysical fluid mechanics of the ocean.
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S5k
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. » CONverge «  ~ =  converge —<— — =
S=s,

Figure 3.5 Schematic of the horizontal convergence of mass between two surfaces of con-
stant generalized vertical coordinates. As indicated by equation (3.139), when
there is zero dia-surface transport, it is just the horizontal convergence that de-
termines the time evolution of mass between the layers. Evolution of thick-
ness weighted tracer concentration in between the layers is likewise evolved
just by the horizontal convergence of the thickness weighted advective and dif-
fusive tracer fluxes (equation (3.140)). In this way, the transport is quasi-two-
dimensional when the dia-surface transports vanish. A common example of this
special system is an adiabatic ocean where the generalized surfaces are defined
by isopycnals.

3.4.6 Cells adjacent to the ocean bottom

4

Grid cell k=kbot
Xy

z=-H

Figure 3.6 Schematic of an ocean grid cell next to the ocean bottom labeled by k = k.
Its top face is a surface of constant generalized vertical coordinate s = sypot—1,
and the bottom face is determined by the ocean bottom topography at z = —H
where spoi (%, y,t) = s(x,y,z = —H, t).

For a grid cell adjacent to the ocean bottom (Figure 3.6), we assume that just
the bottom face of this cell abuts the solid earth boundary. The outward normal fiy
to the bottom is given by equation (3.32), and the area element along the bottom
is

dAny = |V(z+ H)|dxdy. (3.143)
Hence, the transport across the solid earth boundary is
_ //dAH fig- (vpC+]) = // dxdy (VH+2) - (voC+]). (3.144)

We assume that there is zero advective mass flux across the bottom, in which case
the advective flux drops out since v- (VH + 2) = 0 (equation (3.34)). However,
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the possibility of a nonzero geothermal tracer transport warrants a nonzero SGS
tracer flux at the bottom, in which case the bottom tracer flux is written

nggt) = (VH+2)-]. (3.145)

The corresponding thickness weighted budget is given by

d; (dzpC) = dzpS© — V- [dzp(uC+F)] — [p (W) C+24Vs- F)] o + QEE&O,
—Skbot—1
(3.146)
and the corresponding mass budget is
9 (dzp) =dzpSM — vV, - (dzpu) — (pw)s—sy,, , + ng)' (3.147)

where QEEAO)O allows for the possibility of mass entering through geothermal bound-
ary sources. For brevity, we drop this term in the following.

3.4.7 Cells adjacent to the ocean surface

$=Sop z=n

Grid cell k=1

\/2:_H
S%8¢=1

Figure 3.7 Schematic of an ocean grid cell next to the ocean surface labeled by k = 1. Its
top face is at z = 77, and the bottom is a surface of constant generalized vertical
coordinate s = Sg—_1.

X,y

For a grid cell adjacent to the ocean surface (Figure 3.7), we assume that just the
upper face of this cell abuts the boundary between the ocean and the atmosphere
or sea ice. The ocean surface is a time dependent boundary with z = n(x, y, ).
The outward normal fi;; is given by equation (3.55), and its area element dA, is
given by equation (3.56).

As the surface can move, we must measure the advective transport with respect
to the moving surface. Just as in the dia-surface transport discussed in Section
3.1.8, we consider the velocity of a reference point on the surface

v = u'ef 4 5 e (3.148)

Since z = n represents the vertical position of the reference point, the vertical
component of the velocity for this point is given by

w® = (3; +u™ - V)n (3.149)
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which then leads to
v .V (z—1n) =1, (3.150)
Hence, the advective transport leaving the ocean surface is

//dA(n (v—v*ehpC= //dxdy —ni+w—u-Vn)pC
(3.151)
— / dx dy pw g C
z=n
where the surface kinematic boundary condition (3.64) was used. The negative
sign on the right hand side arises from our convention that g, > 0 represents an

input of water to the ocean domain. We can summarize this result with the local
relation

pdAg) f-(v— v'eh)
dA

where again dA = dx dy is the horizontal area element. This relation exposes the

connection between the water flux g, at the ocean surface, and the more general

dia-surface velocity component defined by equation (3.86). In summary, the tracer
flux leaving the ocean free surface is given by

[ dawa-lv=vpC+1 = [[ dxdy(~puguC+V E=n)-J). (153)
z=n z=n

PwGw = — at z=rn, (3.152)

In equation (3.153), we formally require the tracer concentration precisely at
the ocean surface z = . However, as mentioned at the start of Section 3.1.7,
it is actually a fiction that the ocean surface is a smooth mathematical function.
Furthermore, seawater properties precisely at the ocean surface, known generally
as skin properties, are generally not what an ocean model carries as its prognostic
variable in its top grid cell. Instead, the model carries a bulk property averaged over
roughly the upper few tens of centimeters.

To proceed in formulating the boundary condition for an ocean climate model, we
consider there to be a boundary layer model that provides us with the total tracer
flux passing through the ocean surface. Developing such a model is a nontrivial
problem in air-sea and ice-sea interaction theory and phenomenology. For present
purposes, we do not focus on these details, and instead just introduce this flux in
the form

c
Q©) = oy G Cuw + ngzb) (3.154)
where C,, is the tracer concentration within the incoming water g,,. The first term
represents the advective transport of tracer through the surface With the fresh wa-
ter (i.e., ice melt, rivers, precipitation, evaporation). The term Q arises from

(tu rb
parameterized turbulence and/or radiative fluxes, such as sensible, Iatent, short-

wave, and Iongwave heating appropriate for the temperature equation. A positive
value for Q tu b) signals tracer leaving the ocean through its surface. In the special
case of zero fresh water flux, then

Viz—m)J=Quy I =0 (3.155)
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In general, it is not possible to make this identification. Instead, we must settle for
the general expression

// dAgy A [(v— vehopC+]] = // dxdy (—pwqw Cw + QE:;),b)). (3.156)
z=n z=n

The above results lead to the thickness weighted tracer budget for the ocean sur-
face grid cell

0 (dzpC) = dzpS® V.- [dzp(uC+ F)
+[p (@) C+2,: Vs F)] turb) (3.157)

+ (Pw qw Cw — QEC) ),

§=8Sk—1

and the corresponding mass budget

3 (dzp) = dzpSM™ — V- (dzpu) + (pw'))sg,_, + pu qw- (3.158)

3.4.8 Compatability between vertically integrated mass and tracer budgets

We spoke in Section 3.4.2 about the compatibility between the tracer and mass
budgets within a grid cell. Such compatibility follows trivially from the definition of
tracer concentration given in Section 3.4.1. We briefly revisit compatibility here, by
focusing on the vertically integrated tracer and mass budgets.

Combining the surface tracer budget (3.158), the bottom budget (3.146), and
interior budget (3.129), renders the vertically integrated tracer budget

0; (ZdzpC) = z dzpS© —v,. (Zdzp(uC+F))
13 5 5

+ (Pw gw Cw — Qggb) + Qgg(;tt)) .

(3.159)

As expected, the only contributions from vertical fluxes come from the top and
bottom boundaries. Furthermore, by setting the tracer concentration to a uniform
constant, in which case the SGS turbulent terms vanish, the tracer budget reduces
to the vertically integrated mass budget

0t <z dzp) = z dsz(M) — Vs - U+ pwqw, (3.160)
13 13

where

U? = Z dzpu (3.161)
k

is the discrete form of the vertically integrated horizontal momentum per volume
defined by equation (3.20). As for the individual grid cells, this vertically integrated
compatiblity between tracer and mass budgets must be carefully maintained by the
space and time discretizations used in an ocean model. Otherwise, conservation
properties of the model will be compromised (Griffies et al., 2001).
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3.5 FORCES FROM PRESSURE

Pressure is a contact force per area that acts in a compressive manner on the
boundary of a finite fluid domain (e.g., see Figure 3.8). Mathematically, we have

Fpress = — // dA(ﬁ) ap, (3.162)

where p is the pressure (with units of a force per area) acting on the boundary
of the domain with outward normal fi and area element dA ). The minus sign
accounts for the compressive behaviour of pressure. The accumulation of con-
tact pressure forces acting over the bounding area of the domain leads to a net
pressure force acting on the domain.

Through use of the Green-Gauss theorem of vector calculus, we can equiva-
lently consider pressure to exert a body force per area at each point within the
domain, so that

Foress = — / / dvvp, (3.163)

where dV is the volume element. That is, the volume integral of the pressure
gradient body force over the domain yields the net pressure force.

In the continuum, the two formulations (3.162) and (3.163) yield identical pres-
sure forces. Likewise, in a finite volume discretization, the two forms are identical
(e.g., Section 6.2.2 of Hirsch, 1988). But with finite differences, as used in earlier
versions of MOM for pressure forces, the two forms can lead to different numeri-
cal methods. In the remainder of this section, we further explore the computation
of pressure forces according to the two different formulations. Further details of
discrete expressions are presented in Chapter 4.

3.5.1 The accumulation of contact pressure forces

Pressure acts as a contact or interfacial stress on the sides of a finite region of
fluid. In particular, the total pressure force acting on the grid cell in Figure 3.8 is
given by summing the pressure forces acting on the six cell faces

1:"pressure - Fx:x1 + Fx:xz + Fy:yl + Fy:y2 + Fs:sl + Fs:sz‘ (3‘164)

The pressure acting on faces with a zonal normal can be written

Fiex, = X / dy / dzp (3.165)

Froy, = —X / dy / dzp| (3.166)
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Figure 3.8 Schematic of a grid cell bounded at its top and bottom in general by sloped
surfaces and vertical side walls. The top and bottom surfaces can represent lin-
ear piecwise approximations to surfaces of constant generalized vertical coordi-
nates, with s = s; at the top surface and s = s; at the bottom surface. They
could also represent the ocean surface (for the top face) or the ocean bottom (for
the bottom face). The arrows represent the pressure contact forces which act in
a compressive manner along the boundaries of the grid cell and in a direction
normal to the boundaries. These forces arise from contact between the shown
fluid volume and adjacent regions. Due to Newton’s Third Law, the pressure
acting on an arbitrary fluid parcel A due to contact with a parcel B is equal and
opposite to the pressure acting on parcel B due to contact with parcel A. If coded
according to finite volume budgets, as in Lin (1997), this law extends to the pres-
sure forces acting between grid cells in an ocean model.

where the vertical integral extends from the botom face at z, = z(x, y,s = sp,t) t0
the top face at z; = z(x, y,s = s1,t). Likewise, the meridional pressure forces are

Fyoy =9 | [dv [dzp (3.167)
= y=mn
Z1
Fyyy = — / dx / dzp . (3.168)
#2 Y=v2

On the top face, the pressure force is given by

Fo—s, = — (/dy/dxpz,S Vs)
“ S=S§

e (3.169)

- (/dy/dxp(—vsz+2)>

Note the contribution from the generally non-horizontal top face as represented by
the two dimensional vector

§=51

Vsz=S§, (3.170)

which is the slope of the surface of constant generalized vertical coordinate rela-
tive to the horizontal plane. The pressure force on the bottom face has a similar
appearance

Fo_s, = </dy/dxp(—vsz+2)> : (3.171)

S§=Sy
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If the top and bottom faces are horizontal, as for z-models, the pressure force
acting at s = s; and s = s, acts solely in the vertical direction. More generally, the
pressure force per area on the top and bottom faces is oriented according to the
slope of the faces and so has a nontrivial projection into all three directions.

z
| p(x,s1)
X \

A

o

p(x1,s) p(x2,s)

C
p(x,s2)

Figure 3.9 The sides of the grid cell, with the slopes top and bottom surfaces more enhanced
here than in Figure 3.9. The corners are denoted A, B, C, and D, and oriented in
a counterclockwise manner. This is the orientation appropriate for performing a
contour integral in order to compute the pressure force acting on the area.

To garner a sense for how pressure acts on the face of a grid cell, consider the
case where the top surface of a grid cell rises to the east as shown in Figure 3.9.
In this case, the pressure force per area in the x — z plane takes the form

PRESSURE FORCE PER AREA ON TOP FACE = —p [2 — (0z/0x)s X]. (3.172)

Since (0z/0x)s > 0 for this example, the pressure force per area has a positive
component in the % direction, as indicated by the arrow normal to the top surface
in Figure 3.9.

When the top surface represents the surface of the ocean at z = 7, the pressure
p is the applied pressure p, arising from any media above the ocean, such as the
atmosphere and sea ice. In this case,

PRESSURE FORCE PER AREA ON OCEAN SURFACE = —Pa Vv (Z - 7])

3.173
= —pa(z—Vn), ( )

where V1 is the slope of the ocean surface. Likewise, if the bottom of the grid cell
is bounded by the solid earth boundary,

PRESSURE FORCE PER AREA ON OCEAN BOTTOM = pp V (2 + H)

3.174
= Pb (2 + VH), ( )

where V H is the bottom slope.
A sum of the pressure forces acting on the six faces of the grid cell determines
the acceleration due to pressure acting on a grid cell. Organizing the forces into
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the three directions leads to

Z1 Z1
Fgressure = (/ dy/dz P) - (/ dy /dZ P) (3.175)
22 x=x1 22

X=Xp
. *2 . X2
+ (/ dy / dxzy p) — (/ dy /dxz,x p) (3.176)
1 s=s1 ' X 5=59
Z1 z1
prressure = (/ dx /dZ P) - ( dx /dZ P) (3.177)
2 y=n %2 y=12
. o n
+ (/ dx / dyzy p) - (/ dx /dyz,y p) (3.178)
V1 ' 91

§=8§1 5=8Sp

szressure = <// dxdy P) - (// dxdy P> . (3.179)
X 5=83 k 5=81

Making the hydrostatic approximation, whereby the vertical momentum equation
maintains the inviscid hydrostatic balance, allows us to note that the difference in
pressure between the top and bottom surfaces of the region is determined by the
weight of fluid between the surfaces,

//dxdyp—//dxdyp:g/ pdV. (3.180)

S$=Sp §=8§1
It is notable that this expression relates the difference in contact forces acting on
the domain boundaries to the integral of a body force (the gravitational force) acting
throughout the domain interior.
We now work on reformulating the horizontal pressure forces into a manner
amenable to finite volume discretization. Referring to Figure 3.9, we can write
the horizontal forces in a manner than builds in the orientation of pressure via a

counterclockwise contour integral
. 2
- /dy / dxzxp
X1

Pgressure = (/ dy '7gdz P)
21 x=x1
Z1 X1
— (/dy /dzp) - (/dy /dxz,xp)
' ' X=xp X2 s=s1
=— (/ dy 7dz p) — (/ dy 7dz p) (3.181)
x=x1 X1 5=5p
. “ . i
_<'/dyz'{dzp>x —(/dyldzp)

:—/dy }1{ dzp.
| ABCD

S$=Sy

=X7 §=S1
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In the penultimate step, we set z y dx = dz, which is an relation valid along the
particular contour ABCD. That is, in all the integrals, the differential increment dz
is taken along the contour surrounding the cell. The counter-clockwise orientation
of the integral follows from the compressive nature of pressure. Since the contour
of integration is closed, we have the identity

Fgressure - /dy 74 de
ABCD

:'/dy 7{ zdp.

ABCD

(3.182)

The contour integral form of the pressure force is key to providing a finite vol-
ume discretization that is consistent with Newton’s Third Law (Lin, 1997). What is
needed next is an assumption about the subgrid profiles for pressure and geopo-
tential ® = gz in order to evaluate the contour integral.

3.5.2 Pressure gradient body force in hydrostatic fluids

In the early finite difference formulations of the pressure force, modelers dis-
cretized the gradient of pressure and performed certain grid averages so that the
gradient occurs at the appropriate grid point. Guidance to the discretization details
was provided by concerns of energetic consistency (Chapter 9), whereby work
done by pressure in the discrete algorithm is balanced by buoyancy work (Bryan,
1969). This general philosophy still guides the formulation of the pressure force in
mom4pl.

As with the contact forces formulation, in a hydrostatic fluid we are only con-
cerned with horizontal pressure gradients, since the vertical momentum equation
is reduced to the inviscid hydrostatic balance. Hence, we are concerned with the
horizontal acceleration arising from pressure differences in a hydrostatic and non-
Boussinesq fluid, and this acceleration can be written*

p_l VZP = P_l (vs - Vs Zaz) p
=p 1 Vsp+gVsz (3.183)
= P_1V5P+V5(D,

where the hydrostatic relation p, = —p g was used to reach the second equality,
and
O=g9z (3.184)
is the geopotential. To reach this result, we used the expression
V,=Vs—Vsz0;, (3.185)

which relates the lateral gradient operator acting on constant depth surfaces, V.,
to the lateral operator acting on surfaces of constant generalized vertical coordi-
nate, V.

*For a Boussinesq fluid, equation (3.183) is modified by a factor of p/p,.
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Discretizations of the pressure gradient body force result in both terms in equa-
tion (3.183) being large and of opposite sign in many regions, especially regions
of nontrivial topographic slope. Hence, this calculation exposes the calculation to
nontrivial numerical truncation errors which can lead to spurious numerical pres-
sure gradients and thus to incorrect simulated currents. Significant effort has gone
into reducing such pressure gradient errors, especially in terrain following models
where undulations of the coordinate surfaces can be large with realistic topogra-
phy (e.g., see Figure 6.3). Some of these issues are summarized in Section 2 of
Griffies et al. (2000a).

The pressure gradient force acting at a point represents the infinitesimal limit of
a body force. We see this fact by multiplying the pressure gradient acceleration by
the mass of a fluid parcel, which leads to the pressure force acting at a point in the
continuum

PRESSURE GRADIENT FORCE = —(pd V) p~1 V,p
= —dVV.p (3.186)
= —dV(Vsp+pV; D).

Hence, the pressure force acting on a finite region is given by the integral over the
extent of the region

PRESSURE GRADIENT FORCE OVER REGION = — ///(p dV)p 1 V,p

— [favee

As stated earlier, a finite volume discretization of this force will take the same
form as the finite volume discretization of the pressure contact force discussed in
Section 3.5.1, as it should due to the Green-Gauss Theorem invoked to go from
equation (3.162) to (3.163). Other discretizations, in general, fail to maintain this
self-consistency. However, these formulations generally do not provide for a clear
energetic interpretation as promoted by the finite difference formulation of Bryan
(1969).

(3.187)

3.6 LINEAR MOMENTUM BUDGET

The purpose of this section is to formulate the budget for linear momentum over
a finite region of the ocean, with specific application to ocean model grid cells.
The material here requires many of the same elements as in Section 3.4, but with
added richness arising from the vector nature of momentum, and the additional
considerations of forces from pressure, friction, gravity, and planetary rotation.
Note that we initially formulate the equations using the pressure contact force,
as this provides a general formulation. Afterwards, we specialize to hydrostatic flu-
ids, and thus write the pressure force as a gradient (Section 3.5.2), as commonly
done in primitive equation ocean models
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3.6.1 General formulation

The budget of linear momentum for a finite region of fluid is given by the following
relation based on Newton’s second and third laws

0 (// . dev) :// qv st // dAs [f- (v—v"®)]pv

+ [[dAw @er—ap) - [[[avolgz+ (F+ M)z A v
(3.188)

The left hand side is the time tendency of the region’s linear momentum. The first
term on the right hand side, S(¥), is a momentum source, with units momentum
per volume per time. This term is nonzero if, for example, the addition of mass to
the ocean via a source occurs with a nonzero momentum. Often, it is assumed
that mass is added with zero velocity, and so does not appear as a momentum
source. The second term is the advective transport of linear momentum across the
boundary of the region, with recognition that the region’s boundaries are generally
moving with velocity v'®'. The third term is the integral of the contact stresses due
to friction and pressure. These stresses act on the boundary of the fluid domain.
We already discussed the forces from pressure in Section 3.5. The stress tensor
T is a symmetric second order tensor that parameterizes subgrid scale transport
of momentum. The final term on the right hand side is the volume integral of body
forces due to gravity and the Coriolis force.* In addition, there is a body force
arising from the nonzero curvature of the spherical space. This curvature leads to
the advection metric frequency (see equation (4.49) of Griffies (2004))

M =v0yIndy —ud,Indx. (3.189)

In spherical coordinates where
dx = (r cos ¢p) dA (3.190)
dy =rdo, (3.191)

with r the distance from the earth’s center, A the longitude, and ¢ the latitude, the
advective metric frequency takes the form

M = (u/r) tan ¢. (3.192)

The advection metric frequency arises since linear momentum is not conserved
on the sphere.! Hence, the linear momentum budget picks up this extra term that
is a function of the chosen lateral coordinates.

3.6.2 An interior grid cell

At the west side of a grid cell, i = —x whereas i = % on the east side. Hence, the
advective transport of linear momentum entering through the west side of the grid

*The wedge symbol A represents a vector cross product, also commonly written as x. The wedge
is typically used in the physics literature, and is preferred here to avoid confusion with the horizontal
coordinate x.

f Angular momentum is conserved for frictionless flow on the sphere in the absence of horizontal
boundaries (see Section 4.11.2 of Griffies (2004)).
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cell and that which is leaving through the east side are given by

TRANSPORT ENTERING FROM WEST = // dydszsu(pv) (3.193)
X'le
TRANSPORT LEAVING THROUGH EAST = — // dydszsu(pv). (3.194)
X:.Xz

Similar results hold for momentum crossing the cell boundaries in the north and
south directions. Momentum crossing the top and bottom surfaces of an interior
cell is given by

TRANSPORT ENTERING FROM THE BOTTOM = // dxdy w'®) (pv) (3.195)
5'252
TRANSPORT LEAVING FROM THE TOP = — // dxdy w® (pv). (3.196)

§=S1

Forces due to the contact stresses at the west and east sides are given by

CONTACT FORCE ON WEST SIDE = — // dydszs(X-T—Xp) (3.197)
X=X1
CONTACT FORCE ON EAST SIDE = // dydszs(X-T—%Xp) (3.198)
X=Xy

with similar results at the north and south sides. At the top of the cell, dA ;) A =
Vsdxdy whereas dA ) i = —Vsdx dy at the bottom. Hence,

CONTACT FORCE ON CELL TOP = // dxdyzs(Vs-T—pVs) (3.199)
S5=Sk_1
CONTACT FORCE ON CELL BOTTOM = — / dydszs(Vs-T—pVs). (3.200)
S5=5

Bringing these results together, and taking limit as the time independent horizontal
area dxdy — 0, leads to the thickness weighted budget for the momentum per
horizontal area of an interior grid cell

0 (dzpv) = dzS™ — V- [dzu (pv)] + (@' PV)s=s, — (w® PV)s=s; 4
+0x [dz(X- T —%Xp)]+0y[dz(y-T—Fp)]
+[zs (Vs T =pVs)s=s, , — 25 (Vs T —pVs)|s—
—pdz[g2z+ (f+ M)z A V]

(3.201)
Note that both the time and horizontal partial derivatives are for positions fixed
on a constant generalized vertical coordinate surface. Also, the pressure force
as written here is a shorthand for the more complete contour integral formulation
provided in Section 3.5 (e.g., equation (3.182)). Additionally, we have yet to take
the hydrostatic approximation, so these equations are written for the three compo-
nents of the velocity.
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The first term on the right hand side of the thickness weighted momentum bud-
get (3.201) is the momentum source, and the second is the convergence of advec-
tive momentum fluxes occurring within the layer. We discussed the analogous flux
convergence for the tracer and mass budgets in Section 3.4.5. The third and fourth
terms arise from the transport of momentum across the upper and lower constant
s interfaces. The fifth and sixth terms arise from the horizontal convergence of
pressure and viscous stresses. The seventh and eigth terms arise from the fric-
tional and pressure stresses acting on the constant generalized surfaces. These
forces provide an interfacial stress between layers of constant s. Note that even
in the absence of frictional stresses, interfacial stresses from pressure acting on
the generally curved s surface can transmit momentum between vertically stacked
layers. The final term arises from the gravitational force, the Coriolis force, and the
advective frequency.

3.6.3 Cell adjacent to the ocean bottom

As for the tracer and mass budgets, we assume zero mass flux through the ocean
bottom at z = —H(x,y). However, there is generally a nonzero stress at the
bottom due to both the pressure between the fluid and the bottom, and unresolved
features in the flow which can correlate or anti-correlate with bottom topographic
features (Holloway (1999)). The area integral of the stresses lead to a force on the
fluid at the bottom

Foottom = — // dxdy[V(z+H)-t—pV(z+ H)]. (3.202)
z=—H

Details of the stress term requires fine scale information that is generally unavail-
able. For present purposes we assume that some boundary layer model provides
information that is schematically written

™' =V(z+H) T (3.203)

where T is a vector bottom stress. Taking the limit as the horizontal area van-
ishes leads to the thickness weighted budget for momentum per horizontal area of
a grid cell next to the ocean bottom

3 (dzpv) = dz8™) = Vs - [dzu (pv)] — (@) p V)5,
+0y[dz (k- T—%p)|+0y[dz(§-T—9p)]
+[zs (Vs-t—pVs)]
— TbOt—l-pb V(Z—FH)
—pdz[gz+ (f+ M)z A v].

(3.204)

S5=Skbot—1

3.6.4 Cell adjacent to the ocean surface

There is a nonzero mass and momentum flux through the upper ocean surface
atz = n(x,y,t), and contact stresses are applied from resolved and unresolved
processes involving interactions with the atmosphere and sea ice. Following the
discussion of the tracer budget at the ocean surface in Section 3.4.7 leads to the
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expression for the transport of momentum into the ocean due to mass transport at
the surface

—/ dAg)h-[(v— veh pv = // dx dy pw guw v. (3.205)
z=1

The force arising from the contact stresses at the surface is written
Feontact = // dx d]/ [ \Y (Z - TI) T —p \Y (Z — Tl)] (3.206)
z=n

Bringing these results together leads to the force acting at the ocean surface

Fsurface = // dxdy[V(z—n)-T—=pV(z—1n)+ pwqgwV]. (3.207)
z=n

Details of the various terms in this force are generally unknown. Therefore, just as
for the tracer at z = n in Section 3.4.7, we assume that a boundary layer model
provides information about the total force, and that this force is written

Fsurtace = // dxdy [ T — paV (z—n) + pw qw V), (3.208)
z=n

where vy, is the velocity of the fresh water. This velocity is typically taken to be
equal to the velocity of the ocean currents in the top cells of the ocean model, but
such is not necessarily the case when considering the different velocities of, say,
river water and precipitation. The stress 7' is that arising from the wind, as well
as interactions between the ocean and sea ice. Letting the horizontal area vanish
leads to the thickness weighted budget for a grid cell next to the ocean surface

9 (dzpv) = dz8WY) — Vs - [dzu (pv)] + (0 pv)s—s,_,
+0x[dz(%-T—%p)]+0y[dz(§ - T—Yp)]
—[z2s(Vs-T—pVs)|s=s_, (3.209)
+ [T = paV(z = 1) + pw G vu]
—pdz[gz+ (f+ M)z A v].

3.6.5 Horizontal momentum equations for hydrostatic fluids

We now assume the fluid to maintain a hydrostatic balance, which is the case for
primitive equation ocean general circulation models. In this case, we exploit the
pressure gradient body force as discussed in Section 3.5.2. Specializing the mo-
mentum budgets from Sections 3.6.2, 3.6.3, and 3.6.4 to use the hydrostatic pres-
sure gradient force (again, interpreted according to the finite volume form given in
Section 3.5) leads to the horizontal linear momentum budget for interior, bottom,
and surface grid cells

[0 + (f + M) 2A] (pdzu) = dzS™ — V- [dzu (pu)]
—dz(Vsp+p Vs @)
+ 0y (dzx-T) 40y, (dzy- T) (3.210)

— [w(s) pv—2z5Vs- T}S:Sk—l

+ [w® pv — 25 Vs - T]ss,.
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[0+ (f+ M)2A] (pdzu) = dzS8™ — V, - [dzu (pu))
—dz(Vsp+pVs®)
+ 0y (dzX-T) 40, (dzy - T) (3.211)
—[w"®) pu—z5Vs- 1]

o Tbottom

5=5kbot—1

[0:+ (f + M)2A] (pdzu) = dzS™ — V- [dzu (pu)]
—dz(Vsp+pVs D)

+0x (dzX-T) + 0y (dz¥ - T) (3.212)

wind

+[T +quuw]
+ [w(s> pu - Z,S VS ° T]s:sl.

3.7 THE BOUSSINESQ BUDGETS

We consider various depth-based vertical coordinates in Section 6.1. These coor-
dinates are used to discretize the Boussinesq model equations where the volume
of a parcel is conserved rather than the mass. A detailed discussion of the inter-
pretation of the Boussinesq equations in terms of density weighted fields is given
by McDougall et al. (2003a) and Griffies (2004). For now, we gloss over those
details by quoting the Boussinesq equations for volume, tracer, and momentum as
arising from setting all density factors to the constant p,, except when multiplied by
the gravitational acceleration in the hydrostatic balance (i.e., for calculation of pres-
sure and geopotential, the full density is used). The density p, is a representative
density of the ocean fluid. In mom4 we set

po = 1035kgm—3, (3.213)

although this value can be changed via altering a parameter statement and thus
recompiling the code). For much of the ocean, the in situ density deviates less
than 3% from 1035 kgm~3 (see page 47 of Gill (1982)).

The replacement of density in the mass, tracer, and linear momentum budgets
over a grid cell in the ocean interior leads to the following budgets for the hydro-
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static model

61

at(dz)
at(dZ C)

0t + (f+M)2A](ppdzu) =

=dz8V) —
=dzS8©)

=dz8W —

Vs-(dzu) —

V- [dz(uC+F)]

_ (w(s>C+P(S))S:sk_1

+ (@ C+ FO))oy,

V- [dzu (ppu)]

—dz(Vsp+st )

+ 0y (dzx-T) + 0y (dzy - T)
—[w (S>POV_ZSV5 Tls=s_y

+ [w( ) po VvV — Z,s VS ° T]s:sk.

(w(s))s:Sk_1 + (w(s))s:sk-

(3.214)

The first equation reduces to a volume budget rather than a mass budget found for
the non-Boussinesq system. In this equation, S(V) is a volume source with units

of inverse time. Likewise, S

Wisa velocity source (with units of acceleration). The

Boussinesq equations for a grid cell adjacent to the ocean bottom are given by

at(dz)
at(dZ C)

[0t + (f + M) 2A] (podz ) =

=dzs8Vv) —v,. (dzu) — (w(S))SZSkbot—l
=dzS8© — Vs - [dz (uC+F)]

- (w(s) C+ F(S))S:Skbat—l

+ Q bot

dzS™ — V- [dzu (pou)]

—dz(Vsp+pV; D)
+ 0 (dz%-7) + 9y (dz§ - 7)
_ [w(S) pou—2z5Vs- T]SZSkbot—l

Tbottom

and the equations for a cell next

to the ocean surface are

(3.215)

at (dZ)
d; (dz C)

[0 + (f+ M)2A] (podzu) =

=dzsW™)
=dzS8©) — V. [dz(uC+F)]
+ (@™ C+ FO))ey, |
+ (Po gw Cw — (turb

dzsW _y
—dz(Vsp+st )
+0y (dzX-T) 40, (dzy - T)
+[ Wmd"‘PquuW]
+ [w( >pou — 25 Vs Tls—s,.

)
[dzu (pou)]

—Vs- (dZ u) + (w(s))s:sk:1 + Po Gw

(3.216)






Chapter Four

The hydrostatic pressure force

The purpose of this chapter is to detail issues related to computing the pressure
force in hydrostatic ocean models. Care is taken to split the pressure force into its
slow and fast components, thus facilitating a split of the momentum equation for
use in an explicit time stepping scheme for the momentum equation.

In Section 3.5, we encountered two formulations of the pressure force. The
first computes the pressure gradient body force (Section 3.5.2), and considers
the pressure force to be acting at a point. This interpretation follows from a finite
difference interpretation of the velocity equation, following the energetic approach
of Bryan (1969) and all versions of MOM. The second formulation applies a finite
volume interpretation advocated in Chapter 3, with particular attention given to the
contour integral form of pressure as derived in Section 3.5.1. The finite volume
approach does not lend itself to straightforward energetic conversion arguments
(Chapter 9). It is for this reason that we maintain the finite difference approach of
Bryan (1969) in mom4pl.

4.1 HYDROSTATIC PRESSURE FORCES AT A POINT

A hydrostatic fluid maintains the balance

Pz=—pP§ (4.1)

This balance means that the pressure at a point in a hydrostatic fluid is deter-
mined by the weight of fluid above this point. This relation is maintained quite
well in the ocean on spatial scales larger than roughly 1km. Precisely, when the
squared ratio of the vertical to horizontal scales of motion is small, then the hy-
drostatic approximation is well maintained. In this case, the vertical momentum
budget reduces to the hydrostatic balance, in which case vertical acceleration and
friction are neglected. If we are interested in explicitly representing such motions
as Kelvin-Helmholtz billows and flow within a convective chimney, vertical acceler-
ations are nontrivial and so the non-hydrostatic momentum budget must be used.

The hydrostatic balance greatly affects the algorithms used to numerically solve
the equations of motion. Marshall et al. (1997) highlight these points in the context
of developing an algorithm suited for both hydrostatic and non-hydrostatic simula-
tions. However, so far in ocean modelling, no global simulations have been run at
resolutions sufficiently refined to require the non-hydrostatic equations. Addition-
ally, many regional and coastal models, even some with grid resolutions finer than
1km, still maintain the hydrostatic approximation, and thus they must parameterize
the unrepresented non-hydrostatic motions.
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As discussed in Section 3.5.2, at a point in the continuum, the horizontal accel-
eration arising from pressure differences in a hydrostatic and non-Boussinesq fluid
can be written*

pil vzp = .071 (vs - Vs Zaz) p

—p ' Vsp+gVsz (4.2)
= .071 (Vsp+pVs D)
where the hydrostatic relation p . = —p g was used to reach the second equality,
and
O =gz (4.3)

is the geopotential. For cases where the density is constant on s surfaces, we can
combine the two terms into a single gradient, thus rendering a pressure gradient
force with a zero curl. This special case holds for geopotential and pressure co-
ordinates in general, and isopycnal coordinates in the case of an idealized linear
equation of state. However, it does not hold in the more general case, in which
the difficulty of numerically computing the acceleration from pressure arises when
there are contributions from both terms. Generally, both terms can be large and of
opposite sign in many regions. In this case, the simulation is exposed to nontriv-
ial numerical truncation errors which can, for example, lead to spurious pressure
gradients that spin up an unforced fluid with initially flat isopycnals.

Significant effort has gone into reducing such pressure gradient errors, espe-
cially in terrain following models where undulations of the coordinate surfaces can
be large with realistic bottom topography (e.g., see Figure 6.3). Some of these
issues are summarized in Section 2 of Griffies et al. (2000a). Perhaps the most
promising approach is that proposed by Shchepetkin and McWilliams (2002). It is
notable that difficulties with pressure gradient errors have largely been responsi-
ble for the near absence of sigma models being used for long term global ocean
climate simulations.f

4.2 THE PRESSURE GRADIENT BODY FORCE

The presence of both the pressure gradient and density weighted geopotential
gradient in the horizontal linear momentum budgets (3.210), (3.211), and (3.212)
complicates the numerical implementation of the pressure gradient force. The
problem is that numerical errors in one term are often not compensated by the
other term, and such can lead to spurious flows. For the quasi-horizontal depth
based and pressure based coordinates supported by mom4pl (i.e.,s = z, s = z*,
s = p, or s = p*; see Chapter 6), these errors are quite small. The reason is that
these choices ensure that one of the two terms is significantly smaller than the
other. Nonetheless, it is useful to provide a formulation that even further reduces
the potential for errors for both the quasi-horizontal coordinates, as well as the
terrain following coordinates o(?) and o(P) (Chapter 6).

*To obtain this result for a Boussinesq fluid, multiply both sides of equation (4.2) by p/ p,.
"The work of Diansky et al. (2002) is the only case known by the author of a global sigma model
used for climate purposes.
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In addition to reducing errors associated with a numerical computation of the
pressure gradient, we aim to split the pressure gradient into terms that can be
conveniently associated with the slowly evolving internal modes from the faster
barotropic mode. Details of this split are a function of the vertical coordinate.
This split in the pressure gradient then facilitates our treatment of the vertically
integrated momentum equations, as discussed in Section 7.7.

In the following, we are motivated by the formulation of the pressure gradient
commonly applied to z-models. Adcroft and Campin (2004) extended this treat-
ment to the z* vertical coordinate. We take it one more step in order to handle all
vertical coordinates supported by mom4pl. Hallberg (1997) goes further by treat-
ing the pressure gradient in isopycnal layered models using a realistic equation of
state.

4.2.1 Depth based vertical coordinates

As mentioned on page 47 of Gill (1982), in situ density in the bulk of the ocean
deviates less than 3% from the constant density

po = 1035kg m~3. (4.4)
The hydrostatic pressure associated with this constant density has no horizontal
gradients, and so it does not contribute to horizontal pressure gradient forces.
For increased accuracy computing the horizontal pressure gradient, it is useful to
remove this term from the calculation of hydrostatic pressure. For this purpose, we
write the hydrostatic balance as

P8P (4.5)
=—g(po+0),
which has an associated split in the hydrostatic pressure field
p=patpo(z) +p'(x,yz1). (4.6)
We can solve for the pressures by assuming
Po(z=1m)=0 (4.7)
pl(z=n) =0, (4.8)
which leads to
Po= —8Po(z—) (4.9)
=—Po®+gpom,
n
p = g/ p' dz, (4.10)
z
and thus
P=Patgpon—po@+p. (4.11)

Splitting off the free surface height is advantageous as it allows for a split of the
pressure gradient into its fast two dimensional barotropic contributions and slow
three dimensional baroclinic contributions. This split in pressure gradient facili-
tates the development of a split-explicit time stepping method for the momentum
equations considered in Section 7.7. Details of the split in pressure are dependent
on the vertical coordinate choice. We now discuss the three depth based vertical
coordinates used in mom4p1.
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4.2.1.1 Geopotential vertical coordinates

The simplest form of the pressure gradient is realized with geopotential vertical
coordinates. We are here motivated by the desire to split the dynamics into fast
and slow portions, as approximated by depth integrating the momentum equation
(Section 7.7).

The anomalous pressure p’ maintains a dependence on surface height through
the upper limit on the vertical integral in equation (4.10). When working with geopo-
tential vertical coordinates, it is very convenient to isolate this dependence by ex-
ploiting a very accurate approximation described below. This split then allows us
to exclusively place the surface height dependent pressure gradient into the ver-
tically integrated momentum equation. The slow component to the pressure gra-
dient then has no dependence on the surface height; it is instead just a function
of the anomalous density. The slow pressure gradient component thus vanishes
when the density is horizontally unstratified; i.e., when there is no baroclinicity.

To facilitate the split described above, we proceed in the following manner

1
P’=g/ p'dz
z
0 n
:g/ p'dz+g/ p dz
b4 0

0
%g/ p'dz + g 1 Py
JZ

(4.12)

=Peinic T Psur-
The approximation made in the third step remains good where density is well mixed
between z = 0 and z = n, and this is generally the case for large scale modelling.
Here, density in the surface region of the ocean is assumed to take on the value

pSUI’f = pO + péurf/ (413)

which is a function of horizontal position and time. The anomalous pressure p’
has therefore been separated into two pressures, where the anomalous surface
pressure

pgun‘ - pgurfgn (4.14)
is a function of the surface height and surface density, and the pressure
0
Peinic = 8§ /Z p'dz (4.15)

is the anomalous hydrostatic baroclinic pressure within the region from a depth
z < 0to z = 0. Again, the baroclinic pressure is independent of the surface height,
and so its horizontal gradients are only a function of density.

This split of pressure thus renders the horizontal pressure gradient

(Vzp)approx = V (pa+ 8 o1+ Peut) + Vs Peinic + 0" Vs @
=V (Pa + & Osurt 77) + Vs p::linic + p’ Vs @. (4.16)

fast slow

In a geopotential vertical coordinate model, interior grid cells are discretized at
levels of constant geopotential. Hence, the gradient V; reduces to the constant
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geopotential gradient V. In this case the horizontal gradient of the geopotential
vanishes, V, ® = 0. At the bottom, however, mom4pl employs bottom partial step
topography (Pacanowski and Gnanadesikan, 1998). The bottom cells are thus not
discretized along a constant geopotential. Hence, just at the bottom, there is a
nontrivial gradient of the geopotential ® (see Figure 6.1).

4.2.1.2 z* and o'? vertical coordinate

The new issue that arises when moving away from geopotential coordinates is
that the geopotential ® = gz has a nonzero along coordinate gradient in the
interior, whereas with geopotential coordinates it remains nonzero only along the
partial bottom stepped topography. The presence of ® gradients in the interior is
fundamental.

Following the discussion in Section 4.2.1, we are led to the following expressions
for the horizontal pressure gradient. The exact expression relevant for the z* and
o(2) coordinates is given by

(Vz P)exact = Vs p+ pVs @
=Vs(patpot+p)+pVs®
=V (patgpen)+Vsp +0 Vs @.

fast slow

4.17)

Note that we have assumed that the geopotential falls inside the slow portion of
the pressure gradient. This assumption is made even though the depth of a grid
point is a function of the undulating surface height. The validity of this assumption
can be assessed by the integrity and stability of the simulation.

To facilitate a unified treatment in subsequent manipulations, we define

Psurt = Psurf§7N S=12 (4.18)
psut =pogn s=z*0 '
and

4 :g_fzop’dz s=2z

/

po=g [l dz s=2z"00. (4.19)

In both the exact and aproximated pressure gradient expressions, the geopoten-
tial gradient V; @ in the ocean interior is weighted by the small density deviation
o = p— p,. For quasi-horizontal depth-based vertical coordinates supported in
mom4p1l (Section 6.1), the horizontal gradient of the geopotential is small, and the
o’ weighting further reduces its contribution. For terrain following coordinates, the
horizontal gradient term is not small, and the p’ weighting is essential to reduce its
magnitude.

4.2.2 A test case for zero cross-coordinate flow

In the development of generalized vertical coordinates, a useful test case was
suggested by Alistair Adcroft. We focus here on the special case of s = z*. In
this test, initialize the density field as a function only of the vertical coordinate z*.
The domain is flat bottomed and doubly periodic in the horizontal, thus precluding
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pressure gradients due to side boundaries or topography. In a state of rest, there
is no horizontal pressure gradients, and so no motion. As a body force is applied
to the barotropic equations, such as through an ideal tidal forcing, there will now
be a nontrivial surface height field n as well as a nontrivial barotropic velocity. Both
pieces of the slow contribution to the horizontal pressure gradient (4.17) develop
a nontrivial vertical structure, and this will initiate baroclinic structure and thus a
nonzero cross coordinate vertical velocity w(®). This cross coordinate velocity will
be much smaller in the s = z* case than with s = z, given than z* follows the
motion of the free surface.

In order to further test the integrity of the z* implementation, we wish to truncate
the pressure calculation in this test so that there will be no slow pressure gradients
developed when the tidal forcing is applied, and hence there will be no cross coor-
dinate motion. For this purpose, truncate the slow piece of the horizontal pressure
gradient (4.17) as

Vs pl + p/ Vs® — Vg p{runcate‘ (4'20)

In this truncation, we drop the geopotential term p’ V; @, as this will produce non-
trivial horizontal gradients as the surface height undulates. We also introduce a
truncated perturbation pressure determined by

7
p'=g | pdz
JZ
s(n)
=g p zsds
Js(z

4.21)

0
= p{runcate + (g W/H) /z* ,0/ dz*.

To reach the penultimate step, we used zs = (1+ n/H) for s = z*. The coor-
dinate increments used to define the pressure field pfcae @re static in a model
discretizing the vertical according to s = z*. Hence, V; p{yncate = 0 if the density is
a function only of z*. So when the model's slow pressure field is comprised of just
Pruncate the ideal tidal test in the torus should maintain zero cross coordinate flow,
w? =0, even as the surface height fluctuates. Testing to see that this property is
maintained is a useful means of evaluating the integrity of the algorithm.

4.2.3 Pressure based vertical coordinates

A complementary discussion to the above is now given for pressure based vertical
coordinates. Since for pressure based vertical coordinates we solve for the bottom
pressure, it is useful to formulate the geopotential in terms of the bottom pressure
rather than the atmospheric pressure. For this purpose, consider the following
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identities

zZ
d)+gH:g/dz
—-H
4
:g'/ zpdp

Pb
b
= —/ pfl dp
Pb
P

(4.22)
= / (oot +pt—p)dp
Pb
P
= (Po—p)/po+ 05" / (o' /p)dp
Pb
= (pb—p)/Po — (8/Po0) / o dz.
“H
We are thus led to
Po® = pp—p+po(Pp+ CD/), (4.23)
where
z
po @ = —g / p' dz. (4.24)
~“H

is an anomalous geopotential similar to the anomalous hydrostatic pressure intro-
duced in Section 4.2.1, and

Op=-gH (4.25)

is the geopotential at the ocean bottom. The horizontal pressure force is therefore
written

Vsp+pVs® =Vsp+(p/po) V (pp+ 0o Pu) — (p/P0) Vsp+p Vs @
= (p/P0) V (Po+ po @) +p Vs @ — (p'/po) Vs p. (4.26)

fast slow

Note that the three-dimensional pressure term (p’'/p,) Vs p is weighted by the
generallly very small density deviation p’ = p — p,. For the non-terrain following
quasi-horizontal pressure-based vertical coordinates supported in mom4pl (Sec-
tion 6.2), the horizontal gradient of the pressure is small, and the weighting by
(p'/po) further reduces its contribution. Also note that the fast contribution is here
weighted by the density, and so this term may appear to require further splitting
into p = p, + p’ before identifying the fast two dimensional contribution. However,
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as the nonBoussinesq formulation here considers momentum per area, the baro-
clinic velocity includes density weighting (see equation (8.1)). This is how we are
to split the horizontal momentum equations into fast two dimensional motions and
slow three dimensional motions for purposes of time stepping. We consider these
issues further in Sections 7.7 and 8.1.

During the testing of this formulation for the pressure gradient, we found it useful
to write the anomalous geopotential in the following form

z

~(po/g) @' = [ p'dz

“H
1 1

= / p’dz—/p’dz
—H z

n
Zu—Po(H—Fn)—/p’dz
z

(4.27)

8
_ 4/
=P Pam P —po (H+1).
8
To reach this result, we used the hydrostatic balance for the full ocean column,
TI —
[ odz=PF2 g (1) (4.28)
—H g

as well as the definition (4.10) of the anomalous hydrostatic pressure

n
'=¢ / o' dz (4.29)
z

used in Section 4.2.1 for the depth based vertical coordinates. These results then
lead to the identiy

pb+ po (Op+ @) = p’ + pa+pogN. (4.30)

4.3 THE PRESSURE GRADIENT BODY FORCE IN B-GRID MOM4Pr1

We now detail how the pressure gradient body force is represented in the B-grid
generalized vertical coordinate version of mom4pl. As the pressure force acts
to accelerate a fluid parcel, our aim is to determine the pressure force acting at
the velocity cell point. Much in the derivation of the pressure force depends on
assumptions regarding where pressure is computed in the discrete model. For the
B-grid version of mom4p1, hydrostatic pressure is coincident with the tracer fields
as shown in Figure 3.9, which illustrates a typical case where a grid cell is bounded
by vertical sidewalls with generally nonhorizontal tops and bottoms.

As mentioned in Section 3.5.2, we prefer to discretize the pressure gradient body
force as it facilitates the splitting of the pressure force into fast and slow compo-
nents. The result here is a derivation of the Pacanowski and Gnanadesikan (1998)
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discrete pressure gradient body force as originally implemented for the treatment
of partial step bottom topography. Their discussion is relevant here, since the
pressure gradient force in the presence of partial step bottoms must account for
the pressure between cells that live at different depths. This is also the essential
issue for the treatment of pressure with generalized vertical coordinates.
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Figure 4.1 The left panel shows a set of grid cells in the x-z plane for a generalized vertical
coordinate version of mom4. The center point represents a tracer point. As ac-
tive tracers determine density, and as density determines hydrostatic pressure,
the hydrostatic pressure is coincident with tracer. For the x-y plane shown in
the right panel, the velocity and tracer are offset, with the velocity at the north-
east corner of the tracer cell according to the B-grid arrangement. The velocity
cell, shown surrounding the velocity point, has a thickness set according to the
minimum of the surrounding four tracer cell thicknesses. Hence, a velocity point
and tracer point with the same discrete vertical index k generally live at different
depths.

4.3.1 Depth based vertical coordinates

The aim here is to discretize the pressure gradient body force written in the forms
(4.17) and (4.16)

Vs}H—PVs@ =V (Pa“‘Psun‘) + Vs P/+P/ Vs @, (4.31)

where pgys and p’ are defined according to equations (4.18) and (4.19), respec-
tively. Our focus here is the slowly evolving three dimensional terms V;p’ +
o' Vs ®. The first term is straightforward to discretize according to the assump-
tions regarding the placement of pressure given in Figure 4.1. In the right panel
of this figure, we see that pressure is available at the corners of the velocity cell.
Hence, to approximate pressure at the west and east faces of the cell, one can
average the pressure found at the corners. A grid weighted average may be ap-
propriate, but the simplest method is an unweighted average in which

Vsp' ~ X FDX_NT(FAY(p')) + § FDY_ET(FAX(p')) (4.32)
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The averaging operators are defined according to

247 = (aj1q1 +a;

i ( i+1 z) (4'33)
= FAX(a)
and

Za_]‘y = ({1]'+1 +a]-)
= FAY (a)

with the second expression in each equation exposing the notation used in the
ocean model code. Additionally, finite difference operators have been introduced

(4.34)

diin — de
FDX_NT(a) = -1 =1
N (Cl) dxul-,]-

4.35
_ 41— 4 (435

dyuj
These operators are used for fields that live at the north face and east face, re-
spectively, of a tracer cell.

The geopotential contribution in (4.31) is computed using the geopotential val-
ues at the tracer points, and so its gradient is located at the tracer cell faces. To
have the density multiplier at the same point requires that it be averaged prior to
multiplying. Finally, an orthogonal spatial average is required to place the product
onto the velocity point. The result is given by

FDY_ET(a)

p' V@ ~ % |FAY[5;® FAX(p’)}/dxui,j] +y {FAX[(S]@ FAY (p')] /dyu; ;|

(4.36)

4.3.2 Pressure based vertical coordinates
The aim is to discretize the pressure gradient body force written in the form (4.26)
Vsp+pVs® = (p/po) V (po+ po ©p) +p Vs @ — (0'/po) Vs p (4.37)

and to do so in a manner analogous to the Boussinesq case. In particular, we
consider here the slow three dimensional contribution p Vs @' — (p’/p,) Vs p and
write for the pressure term

o' Vsp~ % |FAY[5;p PAX(p’)}/dxui,j] +v [PAX[(Sjp FAY ()] /dyu;j|,| (4.38)

which is analogous to the discrete p’ Vs @ contribution in equation (4.36). The
geopotential term is discretized as

pVs®' ~ %p FDX_NT (FAY(®')) + ¥ p FDY_ET (FAX(®")), (4.39)

which is analogous to the discrete version of V, p’ in equation (4.32). Note that
the density p in equation (4.39) is centered on the velocity cell.



Chapter Five

Parameterizations with generalized vertical coordinates

The parameterization of subgrid scale (SGS) processes is of fundamental im-
portance to ocean models. Details of how these processes are parameterized
depend on the choice of vertical coordinates. The purpose of this chapter is to
describe how various SGS parameterizations are formulated with generalized ver-
tical coordinates in mom4pl. As we will see, by diagnosing the vertical grid cell
thicknesses according to the methods described in Section 7.3, parameterizations
implemented in the geopotential MOMA4.0 code remain algorithmically unaltered
when converting to the generalized vertical coordinate mom4pl.

5.1 FRICTION

The convergence of frictional stress leads to a friction force acting on fluid parcels.
The purpose of this section is to detail the form of friction appearing in the general-
ized vertical coordinate models. For this purpose, we follow much of the discussion
in Chapter 17 of Griffies (2004). In particular, Section 17.3.4 leads us to take the
physical components to the frictional stress tensor in the form

T ™ pKu,
T = ™ -t pkv, |, (5.1)
PKU; PKD; 0

where « is a non-negative viscosity with units m? s~1. Taking 3% = 0 is consistent
with use of the hydrostatic approximation, which reduces the vertical momentum
equation to the inviscid hydrostatic balance. We comment in Section 5.1.3 on the
form of the two-dimensional transverse elements t** and 7*Y.

5.1.1 Vertical friction

As the gravitational force is so critical to stratified fluids close to a hydrostatic bal-
ance, it is typical in ocean modelling to single out the vertical direction. In particu-
lar, closures for the unresolved vertical exchange of momentum are usually taken
to be proportional to the vertical derivative, or shear, of the horizontal velocity field.
This argument leads to the form of the stress tensor given by equation (5.1). For a
generalized vertical coordinate model, the vertical shear elements take the form

PKUz = PKS,Ug. (5.2)

In mom4pl, the left hand side of this expression is numerically evaluated for pur-
poses of computing the vertical shear. That is, vertical derivatives are computed
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for arbitrary vertical coordinates just as in geopotential coordinates. This result fol-
lows by diagnosing the vertical grid cell thicknesses using the methods described
in Section 7.3, where we make use of the relation between vertical coordinates

dz =zsds. (5.3)

Now return to the thickness weighted momentum budget for a grid cell discussed
in Section 3.6. The above considerations lead us to write the frictional stress acting
on a generalized surface as

zsVs-T

I
—~
N>
|
72]
~—
_

2T (5.4)
=pKU,.

The second step used the small angle approximation to drop the extra slope term.
Alternatively, we can interpret the dia-surface frictional stress z ; Vs - T as param-
eterized by pxu .. Either way, the result (5.4) is the form that vertical frictional
stress is implemented in mom4p1.

5.1.2 A comment on nonlinear vertical friction

As noted above, we choose in mom4p1l to implement vertical friction, and vertical
tracer diffusion (Section 5.2.1) just as in a geopotential coordinate model. This
method is facilitated by diagnosing the vertical thickness of a grid cell according to
equation (5.3) (see Section 7.3), prior to computing vertical derivatives.

We now mention an alternative method, not implemented in mom4pl1, since this
method is often seen in the literature. The alternative is to compute the vertical
shear according to the right hand side of equation (5.2). The density weighted in-
verse specific thickness p/z ; adds a nonlinear term to the vertical friction, and this
complicates the numerical treatment (Hallberg, 2000). It is reasonable to approx-
imate this factor by a constant for the dimensionful quasi-horizontal coordinates
considered in Sections 6.1 and 6.2.* For the Boussinesq case with depth-based
vertical coordinates, this approximation results in

PK/Z,S ~ o K, (5.5)

where z ; =~ 1 follows from the results for all but the sigma coordinate in Table 6.1.
The vertical friction therefore becomes

(PKu,z),z ~ P0S,z (Ks,z u,s),s
~ Po (Ku,s),s-

Likewise, dimensionful pressure-based coordinates used for non-Boussinesq flu-
ids have

(5.6)

PK/zs = =8Py K, (5.7)

as follows for all but the sigma coordinate in Table 6.2. The vertical friction there-
fore becomes

(pKu,z),z ~ Po (g Po)2 (K u,s),s~ (5.8)

*Terrain following sigma coordinates, which are dimensionless, are notable exceptions to this re-
sult.
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The above approximations are well motivated physically since the value of the
vertical viscosity is not known to better than 10%, and the above approximations
are well within this range for vertical coordinates whose iso-surfaces are quasi-
horizontal. Similar arguments were presented by Losch et al. (2004). Addition-
ally, the approximations are very conveinent numerically since they allow us to
continue implementing vertical physical processes in a linear manner as tradition-
ally handled in z-models. Such facilitates straightforward time implicit methods to
stably handle large vertical viscosities. Without these approximations, or without
use of the geopotential-based approach described above in Section 5.1.1, vertical
physical processes are nonlinear. Arbitrarily stable numerical methods for such
processes require an iterative scheme such as that discussed by Hallberg (2000)
employed in isopycnal models.

5.1.3 Lateral friction

There is no fundamental theory to prescribe the form of lateral friction at the resolu-
tions available for large scale ocean modelling. Indeed, many argue that the form
commonly used in models is wrong (Holloway, 1992). We take the perspective
that lateral friction in ocean models provides a numerical closure. This perspec-
tive motivates us to prescribe friction in a manner that maintains basic symmetry
properties of the physical system, and which is convenient to implement.

The deformation rates are a basic element of the lateral frictional stress. Using
generalized orthogonal horizontal coordinates and z for the vertical, the deforma-
tion rates given in Section 17.7.1 of Griffies (2004) take the form

er = (dy) (u/dy) x — (dx) (v/dx) y (5.9)

es = (dx) (u/dx),y+ (dy) (v/dy) « (5.10)
where dx and dy are the infinitesimal horizontal grid increments. Consistent with
lateral friction being considered a numerical closure, we place no fundamental im-
portance on the horizontal derivatives being taken on constant z surfaces. Hence,
we propose to use the same mathematical form for the deformation rates regard-
less the vertical coordinate. That is, for a generalized vertical coordinate model,
the deformation rates are computed according to the lateral strains within surfaces
of constant vertical coordinate.

As shown in the Appendix to Griffies and Hallberg (2000), and further detailed in
Section 17.10 of Griffies (2004), the divergence of the thickness weighted lateral
stress within a layer, V - T, leads to the thickness weighted forces per volume
acting in the generalized horizontal directions

dzpF* = (dy) 2 [(dy)* dz v¥] x + (dx) 2 [(dx)*dz 7],
dzpFY = (dx) 2 [(dx)*dz ™), + (dy) 2 [(dy)?dz 7] ,.
We extend the forms for the stress tensor given in Chapter 17 of Griffies (2004)
by assuming that all horizontal derivatives appearing in the stress tensor are taken
along surfaces of constant generalized vertical coordinate. Notably, the forms all
have an overall density factor, such as the general form given by equation (17.119)
in Griffies (2004)
T Xy B (Aer+DARY) (Aes—i—DAny)
™ —t% ) 7P\ (Aes+DAR%) (-Aer+DARY) )’

(5.11)

(5.12)
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with R a rotation matrix

(1) —cos28 —sin26

A is a non-negative viscosity weighting the isotropic stress tensor, and D is a
non-negative viscosity weighting the aniostropic stress tensor. For the Boussinesq
fluid, the density factor in the stress tensor is set to the constant p,. Further-
more, recall that the specific thickness z ; is a depth independent function when
using the vertical coordinates discussed in Section 6.1. For the non-Boussinesq
cases which use pressure-based vertical coordinates, the density weighted spe-
cific thickness pz s is a depth independent function, which then simplifies the den-
sity weighted thickness of a grid cell pdz = pz s ds. These results are familiar from
the analogous simplifications arising for other terms in the scalar and momentum
budgets discussed in Chapter 3.

R _ ( sin20  —cos20 ), (5.13)

5.1.4 Bottom stress

We exposed the form of bottom stress in Section 3.6.3, and it generally leads to a
bottom force given by

Foottom = — // dxdyV(z+H)- -t
z=—H
— _ // dx dy Tbottom.

z=—H

A common method to parameterize this force is to consider unresolved small scale
processes to give rise to a dissipative drag written in the form

Foottom = — // dxdy[pCp vb(u% + utzide)l/z] (5.15)
z:';H

(5.14)

In this equation, Cp is a dimensionless drag coefficient with common values taken
as

Cp ~1073. (5.16)

Because the precise value of Cp is not well known, the product p Cp is approxi-
mated in mom4pl as

pCD ~ Do CD‘ (517)

The velocity uyge represents a residual horizontal velocity that is not resolved in
models running without tidal forcing. Hence, even with the bottom flow weak, the
residual velocity keeps the drag nontrivial. A common value for the residual velocity
is

|ugige| =~ 0.05ms 1. (5.18)

The velocity vy, is formally the velocity within the bottom boundary layer, but it is
commonly taken in models as the velocity at the grid cell adjacent to the bottom.
Note that our assumed form of the unresolved bottom stresses take the form of a
bottom drag. See Holloway (1999) for more general forms where the unresolved
bottom stresses may act to accelerate the resolved flow field.
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5.1.5 Summary of the linear momentum budget

The horizontal linear momentum budgets for interior, bottom, and surface grid cells

are given by equations (3.201), (3.204), and (3.209). We rewrite them here for

future reference, incorporating the more detailed form for friction appropriate for

hydrostatic models

[0+ (f+ M)2A] (dzpu) = pdz8™ — V- [dzu (pu)]
—dz(Vsp+pVs®)+dzpF

—[p (w(s) u—Kuz)fs=s ,

(5.19)

+ [P (w(s) u-— Ku,z) }s:sk

[0+ (f+ M)2A] (dzpu) = pdzS8™ — V- [dzu (pu)]

—[p (@ u—xuz)]
o Tbottom

(5.20)

5=5kbot—1

[0: 4 (f+ M)2A] (dzpu) = pdzS™ — V- [dzu (pu)]
—dz(Vsp+pVs®)+dzpF
+ [+ pw g uw ]
+p(@® u—kuy)lss, ;.

(5.21)

As discussed in Section 3.5.2, we prefer to work with the pressure gradient body
force acting within the grid cell of a primitive equation ocean model, rather than the
accumulation of contact pressures acting at the faces. This formulation in terms of
body forces is convenient in a hydrostatic fluid as it facilitates a numerical treatment
of pressure in the discrete ocean climate model (Section 4.3).

5.2 DIFFUSION AND SKEW DIFFUSION

Some of the results for friction are also applicable for diffusion. However, neutral
diffusion and skew diffusion require some added considerations.

5.2.1 Vertical diffusion

Dianeutral tracer transport is often parameterized with a diffusive closure, and
these closures require the dianeutral derivative of tracer. For most parameteriza-
tions, dianeutral derivatives are computed with a vertical derivative (see Section
7.4 of Griffies (2004)), and these derivatives are computed in mom4pl just as
done for the velocity shears for vertical friction described in Section 5.1.1. Hence,
vertical diffusion of tracer concentration is implemented by a direct computation of
the finite differenced vertical derivative

(pkCyz) = 6;(pkC;) (5.22)
where C is the tracer concentration and « is the vertical diffusivity.
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5.2.2 Horizontal diffusion

Horizontal diffusion is used infrequently in the interior regions of the ocean in
momd4, since neutral physics is preferred for physical reasons. However, near
the surface boundary, arguments presented in Section 15.1 maotivate orienting lat-
eral diffusive processes along surfaces of constant generalized vertical coordinate
when in the surface turbulent boundary, and along topography following coordi-
nates for the bottom turbulent boundary layer. Hence, it is useful to consider the
form that horizontal diffusion takes in generalized vertical coordinates.

When computing the horizontal fluxes as downgradient along surfaces of con-
stant generalized vertical coordinate s, we consider

pF=—-pAV;C, (5.23)
with A a horizontal diffusivity. The thickness weighted horizontal diffusion operator
is therefore given by

R — V. (dzpF). (5.24)

5.2.3 Neutral physics

As for horizontal and vertical diffusion, we compute the tracer flux from neutral
physics as pF, where F is the tracer concentration flux formulated as in a Boussi-
nesq model, and p is the in situ density for a hon-Boussinesq model and p, for
a Boussinesq model. Hence, there are no nontrivial issues involved with imple-
menting this scheme in a non-Boussinesq model. The only issue arising with gen-
eralized vertical coordinates thus relates to the computation of neutral direction
slopes.

Neutral diffusion fluxes are oriented relative to neutral directions. Hence, the
slope of the neutral direction relative to the surface of constant generalized vertical
coordinate is required to construct the neutral diffusion flux.

The scheme of Gent and McWilliams (1990) requires the slope of the neutral
direction relative to the geopotential surface, since this slope provides a measure
of the available potential energy. For simplicity, we use the same slope for both
neutral diffusion and skew diffusion in mom4pl. Doing so facilitates a straightfor-
ward extension of the neutral physics technology employed in the z-model MOM4.0
to the generalized vertical coordinates supported for mom4pl. It however pro-
duces a modified Gent and McWilliams (1990) scheme in which skew diffusion re-
laxes neutral directions toward surfaces of constant generalized vertical coordinate
rather than constant geopontential surfaces. For surfaces of constant generalized
vertical coordinate that are quasi-horizontal, the modified skew diffusion scheme
should act in a manner quite similar to that in a z-model. However, for the terrain
following coordinates o(2) and o(?), novel issues arise which have have not been
considered in the mom4p1 formulation of Gent and McWilliams (1990) skewsion.
Hence, the use of neutral physics parameterizations with terrain following vertical
coordinates is not recommended in mom4p1l.

5.2.3.1 Neutral slopes

A key to the implementation of neutral physics is the slope of a neutral direction
relative to either the geopotential or a surface of constant generalized vertical co-
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ordinate. Implicit in the following is the assumption that the neutral slope is finite
relative to each surface.
The neutral slope relative to the geopotential is
S( ) = sz

o/ (5.25)

=-z,Vzp
with p the locally referenced potential density. The (p/z) subscript notation high-
lights that the neutral slope is computed relative to a geopotential. The relation
between this slope and the others can be seen by noting that in generalized ver-
tical coordinates, the horizontal gradient V is computed using the transformation
(6.33) in Griffies (2004) so that

S(o/z2) = ~2p (Vs = S(52)0z) p
= S(p/5) T S5/2)-

This equation identifies the slope of the generalized vertical coordinate surface
relative to the geopotential

(5.26)

S(s/2) = Vsz
(s/2) = Vs (5.27)
= _Z,S VZS

and the slope of the neutral direction relative to the generalized vertical coordinate
surface
S( ) = Vps
=-z,Vsp (5.28)

= _Z,s S,p VS P.

p/s

In words, equation (5.26) says that the slope of the neutral direction relative to the
geopotential equals to the slope of the neutral direction relative to the generalized
vertical coordinate surface plus the slope of the generalized vertical coordinate sur-
face relative to the geopotential. In isopycnal models, the slope S, ;) is very small
for much of the ocean. Except for the sigma coordinates, each of the depth-based
and pressure-based vertical coordinates discussed in Sections 6.1 and 6.2 have
S(s/2) typically less than 10~# and S(o/5) less than 10~2. For sigma coordinates,
both S, /) and S,y can be nontrivial in much of the model domain affected by
topography.

Figure 5.1 illustrates the relation (5.26) between slopes. This figure shows a par-
ticular zonal-vertical slice, with slope given by the tangent of the indicated angle.
That is, the x-component of the slope vectors are given by

S(s/z) = tanasz)
S(p/z) =tana(, /) (5.29)

S(pfs) = tan ().
In this example, S(,/,) < 0 whereas S,,,) > 0. Note that the angle between the
generalized surface and the isopycnal surface, S(p/s) is larger in absolute value
for this example than S(p/2) This case may be applicable to certain regions of o-
models, whereas for isopycnal models S(p/s) will generally be smaller than S(p/2)"
The generally nontrivial angle S, /) found in sigma models is yet another reason



80 CHAPTER 5

we do not recommend the use of neutral physics as implemented in mom4p1 along
with terrain following vertical coordinates. Significant work is required to ensure a
proper treatment of neutral physics with terrain following coordinates, and we are
not prepared to support such in mom4.

z
} .
p-surface
a(pk)
> a(pfz)
z-surface
a(s/z)
s-surface

Figure 5.1 Relationship between the slopes of surfaces of constant depth, constant general-
ized vertical coordinate s, and potential density p. Shown here is a case where
the slope is projected onto a single horizontal direction, so that the slope is given
by the tangent of the indicated angle. This figure is taken from Figure 6.5 of
Griffies (2004).

5.2.3.2 Fluxes for neutral diffusion

The relative slope between the neutral direction and generalized vertical coordi-
nate is required to compute the neutral diffusion flux. We assume here that this
slope is small, thus allowing us to approximate the full diffusion tensor of Redi
(1982) with the small slope approximated tensor of Gent and McWilliams (1990).
To lend mathematical support for these comments, we start with the neutral diffu-
sion flux as written for the small slope approximation in z-models. As discussed in
Section 14.1.4 of Griffies (2004), this flux has horizontal and vertical components
given by

F = —A;V,C (5.30)
F& = —A1S (/.- V,C. (5.31)

Converting this flux to a form appropriate for generalized vertical coordinates re-
quires a transformation of the gradient operator

Vo =Vz+5(p) 0
=V;+ [S(p/z) — S(s/z)} 0 (5.32)
=Vs+ S(p/s) 0.
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The third equality used the slope relation (5.26).
As seen in Section 3.4, the thickness weighted tracer budget contains a contri-
bution from the convergence of a SGS flux in the form

R=—Vs-(dzpF)—[pzsVs-Fls=s, , +[02s Vs Fls—s,. (5.33)
We are therefore led to consider the dia-surface flux component
F®) =2 ,Vs-F
=(2—S(/z))  F
= —A1(S(p/z) = S(sz)) - Vo C (5.34)
= —A1S(p/5) Vo C
= S(pys) F.

This flux component, as well as the horizontal flux component, take forms isomor-
phic to those for the specific case of s = z given by equations (5.30) and (5.31).
This isomorphism follows from the need to only have information about the relative
slope between the generalized surfaces of constant s and the neutral directions.

5.2.3.3 Fluxes for skew diffusion

An arbitrary tracer has a Gent and McWilliams (1990) skew flux in the form
F=Agm (S(p/z) Cz—2S(,,) - Vz 0), (5.35)

where Agm is a non-negative skew diffusivity. The horizontal component of this flux
is converted to generalized vertical coordinates via

F" = Agn (S (p/s) + S(s/2)) C2
~ Agm S(p/s) C,Z.

Consistent with this same approximation, we are led to the dia-surface component
of the skew flux

zsVs-F=(2-S(/,)) F
= —Agm (S(p/z)* V2 +S(p/z) " S(s/2)02) C
— —AgnS(p/z)- (Vs = S(s/2)02) C — AgnS(p/z) - S(/)0=C  (537)
= —Agm S(p/z) Vs C
~ —AgnS /s Vs C.

(5.36)

These approximations are reasonable where S, )| is much smaller than |S, /)|
if S(,/z) is nontrivial. When the neutral slope S,/ vanishes, as for regions of
zero baroclinicity, this approximation may not be valid when s # z. However, in re-
gions of vanishing baroclinicity, we expect the error to be of minimal consequence
to the simulation since either the z or s based skew fluxes are close to zero. In
general, approximating the slope as proposed here leads the modified Gent and
McWilliams (1990) scheme to dissipate neutral slopes as they deviate from sur-
faces of constant generalized vertical coordinate. So long as these surfaces are
quasi-horizontal, the modified scheme should perform in a physically relevant man-
ner.
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5.2.3.4 Summary of the neutral fluxes

The horizontal and dia-surface components to the small angle neutral diffusion flux
take the form

F = — A} (Vs +8(,5)0:) C
(5.38)
F) — S(p/s) - F®
where the slope is given by
S =V,s
(p/s) p (539)
= _Z,p VS P.
The horizontal and dia-surface skew flux components are approximated by
FM ~ Agn'S(,/6 C
om >le/s) =2 (5.40)
F(S) ~ _Agm S(p/s) ° VS C.

Each of these neutral fluxes are isomorphic to the fluxes used in the z-model
MOMA4.0. This isomorphism enables us to transfer the neutral physics technol-
ogy from MOMA4.0 directly to mom4p1.



Chapter Six

Depth and pressure based vertical coordinates

The purpose of this chapter is to document issues related to the choice of verti-
cal coordinates. In mom4p1, only depth-based and pressure-based coordinates
are supported. Isopycnal coordinates are not supported. Furthermore, terrain fol-
lowing sigma coordinates are coded in mom4pl. However, more work is required
to reduce pressure gradient errors (Section 4.2) and consistently employ neutral
physics (Section 5.2.3 and Chapter 15). Much in this chapter is derived from lec-
tures of Griffies (2005) at the 2004 GODAE School.

6.1 DEPTH BASED VERTICAL COORDINATES

We use depth based vertical coordinates in this section to discretize the Boussi-
nesq equations.” Depth based coordinates are also known as volume based coor-
dinates, since for a Boussinesq model which uses depth as the vertical coordinate,
the volume of interior grid cells is constant in the absence of sources. Correspond-
ingly, depth based coordinates are naturally suited for Boussinesq fluids.

6.1.1 Depth coordinate

With a free surface, the vertical domain over which the z-coordinate
s=1z (6.1)
ranges is given by the time dependent interval —H < z < n. Consequently, the
sum of the vertical grid cell increments equals to the total depth of the column
z dz=H+n. (6.2)
I

The trivial form of the specific thickness z s = 1 greatly simplifies the Boussinesq
budgets.

The depth coordinate is very useful for many purposes in global climate mod-
elling, and models based on depth are the most popular ocean climate models.
Their advantages include the following.

e Simple numerical methods have been successfully used in this framework.

e For a Boussinesq fluid, the horizontal pressure gradient can be easily repre-
sented in an accurate manner.

*Greatbatch and McDougall (2003) discuss an algorithm for non-Boussinesq dynamics in a z-
model. Their methods are implemented in mom4p0a and mom4p0Ob of Griffies et al. (2004). This
approach may be of special use for non-Boussinesq non-hydrostatic z-models. However, when focus-
ing on hydrostatic models as we do here, pressure based vertical coordinates discussed in Section 6.2
are more convenient to realize non-Boussinesq dynamics.
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e The equation of state for ocean water can be accurately represented in a
straightforward manner (e.g., Jackett et al. (2006)).

e The upper ocean mixed layer is well parameterized using a z-coordinate.

Unfortunately, these models have some well known disadvantages, which include
the following.

e Representation of tracer transport within the quasi-adiabatic interior is cum-
bersome, with problems becoming more egregious as mesoscale eddies are
admitted (Griffies et al. (2000b)).

e Representation and parameterization of bottom boundary layer processes
and flow are unnatural.

Grid cells have static vertical increments ds = dz when s = z, except for the
top. At the top, 0; (dz) = n ;. Hence, the thickness of the top cell grows when the
surface height grows, and it thins when the surface height becomes negative. The
time dependent vertical range of the coordinate slightly complicates a numerical
treatment of the surface cell in z-models (see Griffies et al. (2001) for details of
one such treatment). More problematic, however, is the possibility of a vanishing
top grid cell. That is, the surface cell can be lost (i.e., can become dry) if the free
surface depresses below the depth of the top grid cell's bottom face. This is a very
inconvenient feature that limits the use of z-coordinates.* In particular, the follow-
ing studies may require very refined vertical resolution and/or large undulations of
the surface height, and so would not be accessible with a conventional free surface
z-model.

e Process studies of surface mixing and biological cycling may warrant very
refined upper ocean grid cell thickness, some as refined as 1m.

¢ Realistic tidal fluctuations in some parts of the World Ocean can reach 10m-
20m.

e Coastal models tend to require refined vertical resolution to represent shal-
low coastal processes along the continental shelves and near-shore.

e When coupled to a sea ice model, the weight of the ice will depress the
ocean free surface.

6.1.2 An example of depth coordinates

In some of the following discussion, we illustrate aspects of vertical coordinates by
diagnosing the values for the coordinates from a realistic z-model run with partial
step thicknesses. Partial steps have arbitrary thickness which are set to accurately
represent the bottom topography. The partial step technology was introduced by
Adcroft et al. (1997) in the C-grid MITgem, and further discussed by Pacanowski

*Linearized free surfaces, in which the budgets for tracer and momentum are formulated assuming
a constant top cell thickness, avoid problems with vanishing top cells. However, such models do not
conserve total tracer or volume, and so are of limited use for long term climate studies (see Griffies
et al. (2001) and Campin et al. (2004) for discussion).
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and Gnanadesikan (1998) for the B-grid Modular Ocean Model (MOM). Figure 6.1
compares the representation of topography in a z-model using partial steps as
realized in the MOM code of Griffies et al. (2004). Many z-models have incorpo-
rated the partial step technology as it provides an important facility to accurately
represent flow and waves near topography.

Because of partial steps, the level next to the ocean bottom has grid cell centers
that are generally at different depths. Hence, the bottom cell in a partial step z-
model computes its pressure gradient with two terms: one due to gradients across
cells with the same grid cell index k, and another due to slopes in the bottom
topography. Details of the pressure gradient calculation are provided in Chapter 4.
All other cells, including the surface, have grid cell centers that are at fixed depths.
Figure 6.2 illustrates the lines of constant partial step depth for this model.

Full step topography
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Figure 6.1 Comparison of the partial step versus full step representation of topography as
realized in the z-model discussed by Griffies et al. (2005). This vertical section
is taken along the equator. The model horizontal grid has one degree latitudinal
resolution. The main differences are in the deep ocean in regions where the
topographic slope is gradual. Steep sloped regions, and those in the upper ocean
with refined vertical resolution, show less distinctions.
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Figure 6.2 This figure contours the depth of grid cell centers used in a modern geopotential
ocean model. Deviations from the horizontal occur next to the bottom due to
use of a partial bottom step representation of topography, as illustrated in Fig-
ure 6.1. In this case, the bottom cell has an arbitrary thickness according to the
methods of Adcroft et al. (1997) and Pacanowski and Gnanadesikan (1998). This
technology is common in modern geopotential ocean models, as it provides a
more faithful and robust representation of the ocean bottom. Shown here is a
north-south section along 150°W.

6.1.3 Depth deviation coordinate
The depth deviation coordinate
s=z-—1 (6.3)

removes the restriction on upper ocean grid cell resolution present with s = z. That
is, s = 0 is the time independent coordinate value of the ocean surface, no matter
how much the free surface depresses or grows. Hence, no surface cells vanish so
long as n > —H. If n < —H, the bottom topography is exposed, in which case
the model's land-sea boundaries are altered. Such necessitates a model that can
allow for wetting and drying of grid cells. Alternatively, it requires a model where
ocean is extended globally, with infinitesimally thin ocean layers present over land.
We do not have such features in mom4p1.

The depth deviation coordinate ranges between —(H + 1) < s < 0. The only
time dependent interface in s-space is at the bottom of the column. Consequently,
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by solving the problem at the ocean surface, the deviation coordinate introduces
a problem to the ocean bottom where bottom cells can now vanish. To see this
problem, discretize the deviation coordinate s according to time independent val-
ues s;. For example, the s; values can be set as the depths of cells in a model
with s = z. When 1 evolves, depth z and s = z — n become different, and so the
depth of a grid cell must be diagnosed based on the time independent value of s
and the time dependent surface height

Zx = S+ 1. (6.4)
If the time dependent depth of the upper interface of a bottom grid cell is diag-
nosed to be deeper than the actual bottom depth z = —H, then we know that the

bottom grid cell has vanished and so there are problems. To maintain nonvan-
ishing cells requires a limit on how negative n can become. For example, if the
upper interface of a bottom cell is —5000m and the bottom interface (at the ocean
bottom) is H = 5005m, then the bottom cell is lost if n < —5m. This restriction is
of some consequence when aiming to use partial bottom steps (see Figure 6.1)
along with tides and sea ice. In practice, if one is interested in allowing thick sea
ice and nontrivial tidal fluctuations, then it will be necessary to keep the bottom
partial steps thicker than roughly 10m-20m. This is arguably a less onerous con-
straint on the model’s vertical grid spacing than the complementary problem at the
ocean surface encountered with the traditional z-coordinate s = z.

In summary, grid cells have static grid increments ds = dz for all cells except the
bottom. At the bottom, 0; (dz) = 0; (ds) = 1. Hence, the thickness of the bottom
cell grows when the surface height grows, and it thins when the surface height
becomes negative. The bottom cell can be lost if 7 becomes too negative. The
sum of the vertical increments yields the total depth of the column Y, ds = (H +
n). Because the surface height fluctuations are so much smaller than changes in
bottom topography, the depth deviation coordinate appears nearly the same as the
depth coordinate when viewed over the full depth range of a typical model such as
in Figure 6.2.

The author knows of no model routinely using the depth deviation coordinate. It
does appear to have advantages for certain applications over the depth coordinate.
However, the zstar coordinate discussed next resolves problems at both the top
and bottom, and so is clearly preferable. The depth deviation coordinate is not
implemented in mom4pl for these reasons.

6.1.4 Zstar coordinate

To overcome problems with vanishing surface and/or bottom cells, we consider the

zstar coordinate
zZ—n
z*=H . 6.5
(H + n) (6.3)

This coordinate is closely related to the “eta” coordinate used in many atmospheric
models (see Black (1994) for a review of eta coordinate atmospheric models). It
was originally used in ocean models by Stacey et al. (1995) for studies of tides
next to shelves, and it has been recently promoted by Adcroft and Campin (2004)
for global climate modelling.
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The surfaces of constant z* are quasi-horizontal. Indeed, the z* coordinate re-
duces to z when 7 is zero. In general, when noting the large differences between
undulations of the bottom topography versus undulations in the surface height, it
is clear that surfaces constant z* are very similar to the depth surfaces shown
in Figure 6.2. These properties greatly reduce difficulties of computing the hori-
zontal pressure gradient relative to terrain following sigma models discussed next.
Additionally, since z* = z when n = 0, no flow is spontaneously generated in an
unforced ocean starting from rest, regardless the bottom topography.* This behav-
ior is in contrast to the case with sigma models, where pressure gradient errors in
the presence of nontrivial topographic variations can generate nontrivial sponta-
neous flow from a resting state, depending on the sophistication of the pressure
gradient solver.t The quasi-horizontal nature of the coordinate surfaces also facil-
itates the implementation of neutral physics parameterizations in z* models using
the same techniques as in z-models (see Chapters 13-16 of Griffies (2004) for a
discussion of neutral physics in z-models, as well as Section 5.2.3 and Chapter 15
in this document for treatment in mom4p1).

The range over which z* varies is time independent —H < z* < 0. Hence, all
cells remain nonvanishing, so long as the surface height maintains n > —H. This
is a minor constraint relative to that encountered on the surface height when using
§=2z0rs=z—r.

Because z* has a time independent range, all grid cells have static increments
ds, and the sum of the vertical increments yields the time independent ocean
depth Srds = H. The z* coordinate is therefore invisible to undulations of the
free surface, since it moves along with the free surface. This property means that
no spurious vertical transport is induced across surfaces of constant z* by the
motion of external gravity waves. Such spurious transport can be a problem in
z-models, especially those with tidal forcing. Quite generally, the time independent
range for the z* coordinate is a very convenient property that allows for a nearly
arbitrary vertical resolution even in the presence of large amplitude fluctuations of
the surface height, again so long as n > —H.

6.1.5 Depth sigma coordinate

The depth-sigma coordinate
oc=z"/H

(z—n) (6.6)
- \H+n

is the canonical terrain following coordinate. Figure 6.3 illustrates this coordinate
in a realistic model. The sigma coordinate has a long history of use in coastal
modelling. For reviews, see Greatbatch and Mellor (1999) and Ezer et al. (2002).
Models based on the sigma coordinate have also been successfully extended to
basinwide studies, as well as recent global work by Diansky et al. (2002).

*Because of the use of partial bottom steps, there are two terms contributing to horizontal pressure
gradients within the bottom level when s = z. As discussed by Pacanowski and Gnanadesikan (1998),
these two terms lead to modest pressure gradient errors. These errors, however, are far smaller than
those encountered with o coordinates.

fShchepetkin and McWilliams (2002) provide a thorough discussion of pressure gradient solvers
along with methods for reducing the pressure gradient error.
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Just as for z*, the range over which the sigma coordinate varies is time indepen-
dent. Here, it is given by the dimensionless range —1 < ¢ < 0. Hence, all cells
have static grid increments ds, and the sum of the vertical increments yields unity
Skrds = 1. So long as the surface height is not depressed deeper than the ocean
bottom (i.e., so long as n > —H), then all cells remain nonvanishing.*

Some further key advantages of the sigma coordinate are the following.

o It provides a natural framework to represent bottom influenced flow and to
parameterize bottom boundary layer processes.

e Thermodynamic effects associated with the equation of state are well repre-
sented with this coordinate.

However, some of the disadvantages are the following:

e As with the z-models, representation of the quasi-adiabatic interior is cum-
bersome due to numerical truncation errors inducing unphysically large lev-
els of spurious mixing, especially in the presence of vigorous mesoscale
eddies. Parameterization of these processes using neutral physics schemes
may be more difficult numerically than in the z-models. The reason is that
neutral directions generally have slopes less than 1/100 relative to the hori-
zontal, but can have order unity slopes relative to sigma surfaces. The larger
relative slopes precludes the small slope approximation commonly made
with z-model implementations of neutral physics. The small slope approx-
imation provides for simplification of the schemes, and improves computa-
tional efficiency.

e Sigma models have difficulty accurately representing the horizontal pressure
gradient in the presence of realistic topography, where slopes are commonly
larger than 1/100 (see Section 3.5 for a discussion of the pressure gradient
calculation).

Griffies et al. (2000a) notes that there are few examples of global climate models
running with terrain following vertical coordinates. Diansky et al. (2002) is the only
exception known to the author. This situation is largely due to problems represent-
ing realistic topography without incurring unacceptable pressure gradient errors, as
well as difficulties implementing parameterizations of neutral physical processes.
There are notable efforts to resolve these problems, such as the pressure gradient
work of Shchepetkin and McWilliams (2002). Continued efforts along these lines
may soon facilitate the more common use of terrain following coordinates for global
ocean climate modelling. At present, the sigma coordinate is coded in mom4pl
in hopes that it will motivate researchers to further investigate its utility for ocean
modelling.

6.1.6 Summary of the depth based vertical coordinates

Depth based vertical coordinates are natural for Boussinesq equations. These co-
ordinates and their specific thicknesses z ; are summarized in Table 6.1. Notably,

“If n < —H, besides drying up a region of ocean, the specific thickness z; = H + n changes
sign, which signals a singularity in the vertical grid definition. The same problem occurs for the z*
coordinate.
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Figure 6.3 Constant sigma surfaces as diagnosed in a z-model. Shown here is a section
along 150°W, as in Figure 6.2. Note the strong variations in the contours, as
determined by changes in the bottom topography.

both the sigma and zstar coordinates have time independent ranges, but time
dependent specific thicknesses. In contrast, the depth and depth deviation coor-
dinates have time dependent depth ranges and time independent specific thick-
nesses. If plotted with the same range as those given in Figure 6.2, surfaces of
constant depth deviation and constant zstar are indistinguishable from surfaces
of constant depth. This result follows since the surface height undulations are so
much smaller than undulations in the bottom topography, thus making the depth
deviation and zstar coordinates very close to horizontal in most parts of the ocean.

6.2 PRESSURE BASED COORDINATES

The second class of vertical coordinates that we discuss is based on pressure.
Pressure-based coordinates are used to discretize the non-Boussinesq equations,
and these coordinates are also known as mass based coordinates. This hame
is based on noting that for a non-Boussinesq fluid using pressure, the mass of
interior grid cells is constant without sources (e.g., see equation (3.180)).
Pressure coordinates provide a straightforward way to generalize Boussinesq
z-models to non-Boussinesq pressure models (Huang et al., 2001; DeSzoeke and
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COORD DEFINITION RANGE Zs
geopotential | z —-H<z<n 1
z-deviation |z =z —n —(H+n) <z <01

z-star z*=H(z—n)/(H+n) | —-H<z*<0 1+n/H
z-sigma 0@ =(z-n)/H+n) | -1<0<0 H+n

Table 6.1 Table of vertical coordinates based on depth. These coordinates are naturally used
for discretizing the Boussinesq equations. Note that the specific thickness z s is
depth independent. This property proves to be important for developing numer-
ical algorithms in Section 7.6. The coordinates s = z, s = z*, and s = (®) are
coded in mom4pl, whereas the depth deviation coordinate is not.

Samelson, 2002; Marshall et al., 2004; Losch et al., 2004). The reason is that
there is an isomorphism between the Boussinesq equations written in depth based
coordinates and non-Boussinesq equations written in pressure based coordinates.
The root of this isomorphism is the simplification of the density weighted specific
thickness pz ¢ for pressure based coordinates. We detail this point in the following
discussions.

Pressure based vertical coordinates that we consider include the following:

s=p pressure (6.7)
S=p—7pa pressure-deviation (6.8)
s = (Lpa) pressure-sigma (6.9)
Po — Pa
s = 0 P—Pa _
= pp pressure-star. (6.10)
Po — Pa

In these equations, p is the hydrostatic pressure at some depth within the ocean
fluid, pa is the pressure applied at the ocean surface z = n from any media above
the ocean, such as the atmosphere and sea ice, py, is the hydrostatic pressure
at the solid-earth lower boundary arising from all fluid above the bottom (ocean
water and p, above the ocean), and pp is a time independent reference pressure,
usually taken to be the bottom pressure in a resting ocean.” Since p, = —pg < 0
is single signed for the hydrostatic fluid, pressure provides a well defined vertical
coordinate. Strengths and weaknesses of the corresponding depth based coordi-
nates also hold for the pressure based coordinates, with the main difference being
that pressure based models are non-Boussinesq.

6.2.1 Pressure coordinate

With a free surface, the vertical domain over which the p-coordinate
s=p (6.11)

*Note that equation (11.64) of Griffies (2004) used the time dependent py, rather than the time
independent reference pressure pp. The former vertical coordinate has not been used in practice, and
so we focus here on that coordinate defined with the reference pressure py.
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ranges is given by pa < p < pp. Hence, the surface and bottom boundaries are
time dependent, whereas the density weighted specific thickness is constant

pzs=—g ! (6.12)

where the hydrostatic equation p, = —pg was used. The relation (6.12) is
the root of the isomorphism between Boussinesq depth based models and non-
Boussinesq pressure based models.

The time dependent range for the pressure coordinate complicates the treatment
of both the top and bottom cells. In particular, if the bottom pressure is less than the
time independent discrete pressure level at the top interface of the lowest cell, then
there is no mass within the bottom cell. Likewise, if the applied pressure is greater
than the discrete pressure level at the bottom interface of the top cell, then there
is no mass in the top cell. These results mean that grid cells have static vertical
coordinate increments ds = dp for all cells except the top and bottom. At the top,
0; (ds) = 0¢ pa and at the bottom 0; (ds) = —0; pp. The associated mass per unit
area in the cells evolves according to 9; (pdz) = —g‘1 0 pa at the surface, and
0: (pdz) = g1 0; pp at the bottom. Hence, the mass within the top cell decreases
when the applied pressure increases, and the mass in the bottom cell increases
when the bottom pressure increases. Both the surface and the bottom cells can
therefore vanish depending on the applied and bottom pressures.

The sum of the vertical coordinate increments can be found by noting the total
mass per area is given by

g (po—pa) =3 pdz

= z pzsds (6.13)
= —g_l z ds,
thus yielding the time dependent result
S ds=—(po — pa). (6.14)
6.2.2 Pressure deviation coordinate
The pressure deviation coordinate
5=p—pa (6.15)

removes the restriction on upper ocean grid cell resolution since s = 0 is the time
independent value of the ocean surface. That is, this coordinate ranges between
0 < s < pp— pa. This coordinate is isomorphic to the depth deviation coordi-
nate s = z — n discussed in Section 6.1.3, and shares the same limitations which
prompt us not to have this coordinate coded in mom4pl.

In summary, grid cells have static vertical coordinate increments ds for all cells
except the bottom. At the bottom 0; (ds) = —0: (pp — pa). The associated mass
per unit area in the bottom cell evolves according to 8; (pdz) = g1 0 (po — pa)-
As for the pressure coordinate, the sum of the vertical coordinate increments yields

Y ds = —(po— pa)- (6.16)
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6.2.3 Pstar coordinate
The pstar coordinate is given by

P =1h <%) , (6.17)
where p} is a time independent reference pressure generally chosen as

1
=g [ dzo™, (6.18)

This coordinate is isomorphic to the z* coordinate, with p* extending over the time
independent range 0 < p* < pp.

The sum of the vertical coordinate increments can be found by noting the total
mass per area is given by

g (pp—pa) =3 pdz
szsds (6.19)

_< 8Py >st

thus yielding the time independent result

Y ds = —pp. (6.20)

6.2.4 Pressure sigma coordinate

The pressure-sigma terrain following coordinate

o) — ( 5b—__?;aa) (6.21)

is the pressure analog to the depth based sigma coordinate o(?) = (z — 1) /(H +
n). This coordinate has been used by Huang et al. (2001), and it shares the same
advantages and disadvantages as the depth-based sigma coordinate. Grid cells
have static vertical coordinate increments ds for all cells. The associated mass per
unit area never vanishes in any cell, so long as the bottom pressure is greater than
the applied pressure.

The sum of the vertical coordinate increments can be found by noting the total
mass per area is given by

g (po—pa) =3 pdz
= z pzsds (6.22)
=—¢ '(pp—pa) Y ds,

thus yielding the time independent result

Y ds=-1. (6.23)
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COORD DEFINITION RANGE gpzs
pressure p Pa<p<pp -1
p-deviation | p’' = p— pa 0<p <pob—pa| -1

pstar P =po(p—pa)/(pr—pa) | 0<p" <p} —(po —pa) /P2
p-sigma o =(p—pa)/(pp—pa) [0<0<1 —(po — pa)

Table 6.2 Table of vertical coordinates based on pressure. These coordinates are naturally
used for non-Boussinesq dynamics. Note that the density weighted specific thick-
ness pzs is depth independent. This property proves to be important for devel-
oping numerical algorithms in Section 7.6. The coordinates s = p, s = p*, and
s = o(P) are coded in momd4p1, whereas the pressure deviation coordinate is 10t.

6.2.5 Summary of the pressure based vertical coordinates

A technical reason that the pressure based coordinates considered here are so
useful for non-Boussinesq hydrostatic modelling is that pz ; is either a constant or
a two-dimensional field. In contrast, for depth based models pz; is proportional
to the three-dimensional in situ density p, thus necessitating special algorithmic
treatment for non-Boussinesq z-models (see Greatbatch and McDougall (2003)
and Griffies (2004)). Table 6.2 summarizes the pressure-based coordinates dis-
cussed in this section. The pressure and pressure deviation coordinates have
time dependent ranges but time independent specific thicknesses pz ;. The sigma
and pstar coordinates have time independent range but time dependent specific
thickness.

As Table 6.2 reveals, the specific thickness z ; is negative for the pressure-based
coordinates, whereas it is positive for the depth-based coordinate (Table 6.1). The
sign change arises since upward motion in a fluid column increases the geopoten-
tial coordinate z yet decreases the hydrostatic pressure p. To establish a conven-
tion, we assume that the thickness of a grid cell in z space is always positive

dz=zsds >0 (6.24)

as is the case in the conventional z-models. With z ; < 0 for the pressure-based
vertical coordinates, the thickness of grid cells in s space is negative

ds <0 for pressure-based coordinates with z ; < 0. (6.25)



PART 2
Numerical formulations

The purpose of this part of the document is to describe algorithms used to nu-
merically solve the ocean primitive equations in mom4p1.






Chapter Seven

Quasi-Eulerian Algorithms

There are two types of ocean models as distinguished by their solution algorithms
(Adcroft and Hallberg, 2006). Eulerian vertical coordinate algorithms diagnose the
dia-surface velocity component from the continuity equation. Lagrangian vertical
coordinate algorithms specify the dia-surface velocity component (e.g., zero di-
apycnal velocity in adiabatic simulations with isopycnal coordinates). Eulerian in
this context does not mean that a grid cell has a time constant vertical position.
Hence, the term quasi-Eulerian is often used. This chapter develops the semi-
discrete budgets of a hydrostatic ocean model and then presents quasi-Eulerian
solution algorithms. Notably, as implemented in mom4pl, the quasi-Eulerian al-
gorithms are formulated assuming a time independent number of grid cells. That
is, mom4pl does not allow for vanishing cell thickness. Such simplifies the algo-
rithms in many ways, but in turn limits the extent to which this code can be used
for simulations where water masses change in a nontrivial manner (e.g., wetting
and drying is not handled in mom4p1).

7.1 PRESSURE AND GEOPOTENTIAL AT TRACER POINTS

We discussed the discrete pressure gradient body force appropriate for a finite

difference discretization in Sections 4.2 and 4.3. We require the anomalous hydro-

static pressure in the depth based models, and the anomalous geopotential height

in the pressure based models. That is, for depth based vertical coordinate models,

we need a discretization of the anomalous hydrostatic pressure (equation (4