Parallel I/O
(mpp_lo)
Zhi Liang
Jeff Durachta

Zhi.Liang@noaa.gov
Jeffrey.Durachta@noaa.gov

Overview

File System Basics and Types

GFDL and ORNL Storage

Fundamentals of Parallel 1/O

MPP_ 10 basics

Hiding complexity and Increasing performance
The MPP_IO interfaces

Higher level Application Programming
Interfaces (API) through FMS 10

File System Basics

® Directories: A way to group files
o In*IX operating systems, these are also “files”

® Metadata: Other bookkeeping information
o Length of the data (number of blocks)
o Time stamp
o The file “device type” (block, character, subdirectory, etc)
o User, Group ID and access permissions
o On *IX operating systems, the metadata stored in “inodes”

® Regardless of the file system, access to the metadata
can be a performance choke point

® Role & cost of storage in HPC is often under appreciated

o Storage performance lags far behind our growing ability to
produce data

File System Types

® List not intended to be exhaustive
o See http://en.wikipedia.org/wiki/List_of file systems
o Disk file systems
= ext{2,3,4}, JFS, XFS, FAT, NTFS
o Distributed file systems

= Also called “Network” file systems
= AFS (Andrew), DFS, NFS

o Cluster and Parallel file systems
= CXFS, GPFS, Lustre, PVFS, Panassas

® Tradeoffs: performance, scalability, robustness and
COST!

File System Performance

® Inaword: STRIPING

o Hardware
= Physical disks
= Disk controllers

o Software

* LUNSs (a LUN is a logical reference to a portion of the storage)
® Can be disk, portion thereof, whole or portion of an array, etc

= Lustre Object Storage Target (OST)
® A set of storage components targeted by the Object Storage Server

® “Block Size” (the unit of read or write) also a major factor
o Larger is generally better for striping

® Buffering of data in “caches”
o O/S Memory
o Physical cache on the disk or controller

® Read ahead / Write behind

GFDL PAN Cluster Fun Facts (Today)

® GFDL Archive

o 5 StorageTek Tape Silos
= 3 SL8500 w/ 32 T10K-C & 50 T10K-B Drives
= 2 older Powderhorn silos; lightly used

o Current capacity for 3 SL8500: ~200PB using T10K-C drives

= Current utilization: ~30PB
® ~37PB including dual copy and soft deleted

= ~0.5PB per month archive growth (constrained by quotas)
o Front-end disk cache: 3.2PB

o Upgrade scheduled for delivery this fall
= +1PB for the disk cache (~4.2PB after upgrade)
» 22 additional T10K-C drives replacing the older T10K-A and B

= T10K-C tapes
® acapacity of 5TB vs 1TB for T10K-B and 0.5 for T10K-A
® 240 MB/s uncompressed I/O rate vs 120MB/s for A & B

GFDL PAN Cluster Fun Facts

® Post-processing nodes: Optimized for 1/O

o 94 - Dual Socket Quad Core (Westmere) Nodes
= 8 cores per node
= 48GB memory / 9.4TB local scratch disk (“vitmp”)

= 1.4GB/s write & 0.7GB/s read full duplex
® Serial Attached SCSI (SAS) disk
® Substantially better random access than Serial ATA disk

® Analysis nodes
o 14 — (mostly) 8 core nodes; 2 are 12 core Nehalem-EX
o Optimized for multiple simultaneous users
o More disk but less expensive SATA; more memory

® PAN gets substantial upgrade in fall
o Significantupgrade to number of analysis nodes (Intel “Sandy Bridge”)
o Large local disk post-p nodes to test “node affinity” history processing

Gaea Layout @ ORNL

ESlogin

_— 10Gb NOAA R&D
Network

File Systems at GFDL

10Gb NOAA R&D
Network

postproc

analysis

RDTN

workstations
(publicl1)

Fundamentals of Parallel I/O

® Application I/O can be very expensive especially for
large parallel models
o Single process
= Communication to single I/O process is also a bottleneck
= Generally requires very large memory for the 1/0O process
= Performance generally poor relative to file system potential

o All processes
= Reduces the maximum per process memory
= But can overwhelm the file system
® Supporting multiple file formats can be very complicated
for the developer

o netCDF, ASCII, platform native binary, etc

MPP |0 Basics

® Provides a set of simple calls that abstract the
parallel environment

® Built on mpp and mpp_domains

® Supported parallel I/O models

o Single-threaded: a single task acquires all data and
writes it out

o Multi-threaded, single-fileset: many tasks write to a
single file

o Multi-threaded, multi-fileset: multiple tasks write to
Independent files

= Most used today
= Requires post-processing to produce global data

MPP |0 Basics

® Focus on netCDF
o Format widely used in the climate community

o "Compact" dataset (comprehensively self-
describing)

® Regardless of /0 model, final (science) dataset
bears no trace of parallelism

® Basic API

o mpp_open(), mpp_close()
o mpp_read(), mpp_write()

o Mmpp_read_meta(), mpp_write_meta()

/O Subsets: Hldlng Complexity

I/O process

FMS implements I/O
subsets

o A given MPI rank acts
as the 1/O server for a
user definable subset of
the processes

® This grid has a subdomain layout of (8,8)

® Section colors represent the I/O layout (4,1)
o For FMS, I/O layouts must be an integral division of

the subdomain layout

= An |/O layout of (3,3) will not work
o The cubed sphere introduces additional restrictions
= An |I/O subset cannot span cs faces

MPP_IO: Hiding complexity

2) Conformal ' b) Elliptic ' Regular grid mosaic.

¢) Gnomonic ; d) Spring : Reflned grld mosaIC

Cubed Sphere

MPP_1O: Increasing performance

® |/O subsets via io_layouts provide flexibility
to adjust individual model component file
access relative to the file system
characteristics

o Adjust number of reader / writer processes

o Trade offs between communication, I/O capabilities
and memory size.

Example: Ice Model “Orange Section” Decompostion

MPIl-rank to Node/Core Mapping

Ice Grid = 1440x1080; layout = (180,10); subdomains are 8x108

MPIl-rank to Node/Core Mapping

io_layout = (180,1) means 180 I/O processes each serving 10 ranks packed onto 6 nodes
I/O Ranks = {0-180}

1620

6 -166 Q_ O c0)- O

m 06()-99 mm

MPIl-rank to Node/Core Mapping

Io_layout =(1,10) means 10 I/O processes each serving 180 ranks with 1 process on a node
I/O Ranks = {0, 180, 360, 540, 720, 900, 1080, 1260, 1440, 1620}

1000 | 10gs0110 | sszoasss | wsewss | wsssazss | izieazar

180 | 1op003 | zoazss | assesr | ssesie | seosss | 32

MPIl-rank to Node/Core Mapping

io_layout = (2,2) means 4 1/O processes serving 450 ranks with 1 /O process on a node
I/0 Ranks = {0, 90, 900, 990}

..

O

() () (QQ O () Q Q /] /]
O Q_O O O (.00 mm

 msis | sweor | eosess | ewenn | emas | 0%
180 | oooe | asasss | ssessr | sssme | o | 32

More Abstraction: FMS_|O & the Diag Manager

® Even with simplifications of mpp_io, additional
abstraction is often useful
o Rich netCDF metadata expression is not necessary for all files
o FMS 10 wraps MPP_10O providing even simpler semantics (e.g.
model restart files)
® Uniformity of metadata approach allows common post-
processing tools across model components
o The DIAG_MANAGER deals with the complexities of the model
history data (covered by Seth Underwood)
® Most of the model I/0O is mediated through the FMS_10
and DIAG_MANAGER Iinterfaces

FMS 10 AP

® fms_io _init is called automatically during model

Initialization
® file_exist, open_file, open_file direct

® open restart_file, open_namelist_file,
open_leee32 file

® read data, write data
® register restart_field, save restart
® fms_io_exit

read data

subroutine read data(filename,fieldname,domain,...)

don =1, ntileMe
Isc = Atm(n)%oisc; iec = Atm(n)%iec; jsc = Atm(n)%jsc; jec = Atm(n)%jec
call get_tile_string(fname, 'INPUT/fv_core.res.tile', tile_id(n), '.nc")
if(file_exist(fname))then
call read_data(fname, 'u’, Atm(n)%u(isc:iec,jsc:jec+1,:), domain=fv_domain, ...)
call read_data(fname, 'v', Atm(n)%v(isc:iec+1,jsc:jec,:), domain=fv_domain, ...)

call read_data(fname, 'T', Atm(n)%pt(isc:iec,jsc:jec,:), domain=fv_domain, ...)
call read_data(fname, 'delp’, Atm(n)%delp(isc:iec,jsc:jec,:),
domain=fv_domain,..)
call read_data(fname, 'phis', Atm(n)%phis(isc:iec,jsc:jec), domain=fv_domain,
.r)
else
call mpp_error(FATAL, &
'==> Error from fv_read_restart: Expected file '//trim(fname)//' does not exist')
endif

register_restart field

subroutine register restart field(fileObj,filename,
fieldname,data,domain,...)

type(restart_file_type), allocatable :: Fv_tile restart(:)
subroutine fv_io_register restart(fv_domain,Atm)

fname_nd = 'fv_core.res.nc'

id_restart = register_restart_field(Fv_tile_restart(n), fname_nd, 'u’, Atm(n)%u, &
domain=fv_domain, ...)

id_restart = register_restart_field(Fv_tile_restart(n), fnrame_nd, 'v', Atm(n)%v, &
domain=fv_domain, ...)

id_restart = register_restart_field(Fv_tile_restart(n), fnrame_nd, T', Atm(n)%pt, &
domain=fv_domain, ...)

id_restart = register_restart_field(Fv_tile _restart(n), fnrame_nd, 'delp’, Atm(n)%delp, &
domain=fv_domain, ...)

id_restart = register_restart_field(Fv_tile_restart(n), fnrame_nd, 'phis’, Atm(n)%phis, &
domain=fv_domain, ...)

save restart

subroutine save restart(fileObj,time stamp,...)

subroutine fv_io_write_restart(Atm, timestamp)

call save_restart(Fv_restart, timestamp)

if (use_ncep_sst .or. Atm(1)%nudge .or. Atm(1)%ncep_ic) then
call save restart(SST_restart, timestamp)
endif

do n =1, ntileMe
call save restart(Fv_tile_restart(n), timestamp)
call save_restart(Rsf _restart(n), timestamp)

if (Atm(n)%fv_land) then
call save restart(Mg_restart(n), timestamp)
call save restart(Lnd_restart(n), timestamp)
endif

call save_restart(Tra_restart(n), timestamp)
end do

