
UsingFRE

• 1 Software Life Cycle 
• 2 GFDL Models vs. FMS Component "Models" 
• 3 What's in a XML 
• 4 FMS Regression testing 

• 4.1 Compiler options 
• 4.2 Component/Branch/Integration/Validation/System testing 

• 5 Regression testing via FRE 
• 5.1 Choose the right xml 
• 5.2 FRE setup 
• 5.3 frelist 
• 5.4 fremake 
• 5.5 frerun 

• 5.5.1 frerun Exercise 
• 5.6 frecheck 

• 6 Production runs 
• 6.1 Submit the 11 years perturbation job 

• 7 Recovering from failed transfers 
• 7.1 Check whether the history files are ready on Gaea 
• 7.2 Recover from failed combines 

Software Life Cycle 
Traditional Waterfall Model of software development (Ad hoc) 

http://wiki.gfdl.noaa.gov/index.php/File:WaterfallModel.JPG


FMS follows more closely a V Model (which has feedback mechanism built-in) 

GFDL Models vs. FMS Component "Models"
GFDL Climate Model ATMOS OCEAN SEA ICE LAND 

CM2M FV lat-lon, am2 MOM4p1 SIS LAD 

CM2G FV lat-lon, am2 GOLD SIS LAD 

ESM2M FV lat-lon, am2 MOM4p1 SIS LAD2 

ESM2G FV lat-lon, am2 GOLD SIS LAD2 

CM3 FV lat-lon, am3 MOM4p1 SIS LAD2 

CM3Z Cubed Sphere, am3 MOM4p1 SIS LAD2 

The FMS components are linked together and driven via the FMS coupler (coupler.F90 + 
flux_exchange.F90) 

What's in a XML
• Experiment: A functional simulation unit that can produce output data or executable. 
• FRE: FMS Runtime Environment is a bundle of tools to facilitate GFDL model runs across 

multiple platforms and sites. 
• Example. We want to run the experiment "c48L48_am3p10" on ncrc platform number 2 

("ncrc2") using Intel compiler and do postprocessing at GFDL automatically after the 
run has finished. 

• XML: A fancy document to describe and point to all the input/output data and the setup for the 
"experiments". It has specific "Markup" hooks to be recognized and handled by FRE. 

http://wiki.gfdl.noaa.gov/index.php/File:V-model.JPG


• Example: AM3.xml 
• Example: AM3_skleton.xml 

FMS Regression testing
• Answers: The content of restart files at the end of the run. 
• Bitwise Reproducibility: The value of all corresponding variables (fields) in two restart files 

are identical (to the last digit). 

Regression testing should ensure: 

• Internal consistency: 
• Repeat each experiment at least twice: 

• Once with a different PE number/layout. 
• Once with a middle restart. 

• Ensure the bitwise reproducibility between these 3 runs. 
• Bitwise reproducibility of reference runs: 

• Ensure the experiment answers match each other (and hence reference run) bitwise 
between the intermediate releases. 

• If the answers change between major "city" releases track down and document the 
reason. 

• Long term "climate" run validation 
• Given that answers might change between major "city" releases, climate experiments 

shall be repeated (at least 100 years duration) to ensure the preservation of climate. 

Compiler options

• debug mode: This is the set of compiler options that ensure debugging tools for trapping NaN's 
and traceback work properly. Specifically no optimization -O0. 

• repro mode: This is the set of compiler options that ensure the bitwise reproducibility of 
experiments. Specifically toned down optimization -O2. 

• prod mode: This is the set of compiler options used for the fastest turnaround in production 
(climate) runs. Specifically full optimization -O3. 

Component/Branch/Integration/Validation/System testing

Regression testing comes in many flavors corresponding to the time in the lifecyle: 

• Component testing: AKA Unit testing. Testing the code modifications at a very granular level 
to ensure the validity and applicability of individual modifications to the source code. 

• Usually done by the developers. 
• Shall not break the build at the least! 

• Branch testing: Regression testing with a mixture of released and un-released cvs banch codes. 
• Example: cvs "branch_X" for Ocean component + "siena" relase for all else. 
• Done by the developer and FMS group members. 
• Alerts developers for regression failures to fix their branch code. 

• Integration testing: Merging a chosen set of branch codes together and regression testing with 



it (towards a new release). 
• Done by the FMS group. 
• Alerts developers for regression failures to fix their branch code. 

• Validation testing: Regression testing with a defined set of code identified for the incoming 
release after all Integration alerts are fixed. 

• Done by the FMS group. 
• No more changes accepted except critical. 

• System testing: AKA end2end testing. Regression testing with a pre-release code that includes 
data transfer and postprocessing. 

• Done by the FMS group as well as "model runners". 
• No more changes accepted except very critical bugs that affect the climate. 

Regression testing via FRE
Let's say we want to do a simple Validation testing with the branch called "siena_201204" of the am3 
code. 

Choose the right xml

• The xmls are usually checked in along with the release. 
• cvs co -r siena_201204 xml 

• For this session we have prepared 15 variations (perturbations) of the same control experiment 
in 15 different xmls 

 cd $HOME ; cp -r ~Ni-Zhang.Golaz/ssam2012/siena_201204/xml $HOME/ 
 cd xml
 ln -s AM3_ssam[dd].xml myAM3.xml

• Review and modify the xml to your needs 
• Our example: AM3_ssam11.xml 
• Review the setup section to run on ncrc2. 

FRE setup

All FRE commands are bundled in a module fre/FRE_VERSION 

module load fre/bronx-1

frelist

• List the experiments in the xml 

frelist -x $HOME/xml/myAM3.xml -p ncrc2.intel -t prod-openmp 

• Each of these xmls contain one (and the same) control experiment and one variation experiment 
"inheriting" from it. 

• "inherit" is the xml mechanism of choice to do the perturbations, where you may change the 
parameters of one experiment to make a new one 

• Want to know where the executable sits and where the outputs go for a given experiment? 



frelist -d all -x $HOME/xml/myAM3.xml  -p ncrc2.intel -t prod-openmp c48L48_am3p10 

• Review the xml to figure out which experiment(s) contain checkout/compilation instructions 

fremake

• Compile and build the executable for the experiment. 
• Platform is ncrc2 loaded with Intel compiler. 
• Target is production (optimized) mode compiled with openmp on. 

fremake -x $HOME/xml/myAM3.xml -p ncrc2.intel -t prod-openmp c48L48_am3p10 

• NOTE: You can directly run the compile script on the login node rather than doing the msub. It 
is very verbose! 

frerun

• To do the "basic" regression run for the control experiment c48L48_am3p10 : 

frerun -x $HOME/xml/myAM3.xml -r basic -p ncrc2.intel -t prod-openmp c48L48_am3p10 
-S

• Note the -S for "submit with staging the data" happening before the run. 

• To submit all the "rts" tests for later comparison you could run the following command. 
• Note the -s for submit without staging data (the data has been staged once the above run 

is finished). 

frerun -x $HOME/xml/myAM3.xml -r rts -p ncrc2.intel -t prod-openmp c48L48_am3p10 -s 

frerun Exercise

Submit a 2 days run on 96 processors for the perturbation experiment c48L48_am3p10_XXX in your 
xml BUT start from a different Initial Condition file at: 

/lustre/ltfs/scratch/Ni-
Zhang.Golaz/ssam2012/input/siena_201204_regression/20000109.tar

• Step 1: Search for the "initCond" in your xml, this is the dataFile that you need to change. 

• Step 2: We want to keep the original experiments as they are, so you need to create a new 
experiment in the xml that "inherits" from the original perturbation experiment: 

  <experiment name="c48L48_am3p10_dust_emis_newInitCond" 
inherit="c48L48_am3p10_dust_emis">
    <input>
         <dataFile label="initCond" target="INPUT/" chksum="" size="" timestamp="">
            <!--<dataSource platform="$(platform)">/lustre/ltfs/scratch/Ni-
Zhang.Golaz/ssam2012/input/siena_201204_20yr/restart/20000101.tar</dataSource> -->
            <dataSource platform="$(platform)">/lustre/ltfs/scratch/Ni-
Zhang.Golaz/ssam2012/input/siena_201204_regression/20000109.tar </dataSource>
         </dataFile>
    </input>
    <runtime>
      <regression name="2days">
        <run days="2" npes="96" runTimePerJob="00:45:00"/>



      </regression>
    </runtime>
  </experiment>

• Step 3: 

frerun -x $HOME/xml/myAM3.xml -r 2days -p ncrc2.intel -t prod-openmp 
c48L48_am3p10_dust_emis_newInitCond

• Step 4: 

Make sure that the frerun does not give warning about missing executable. This is 
one way to ensure that the executable exists.

• Step 5: 

Inspect the shell script that frerun made. This script is what the resource 
managers and the machine understand. 

• Step 6: 

Try to run the created script manually at your login shell and see what happens. 
Why do you think it fails?

• Step 7: 

Submit the job as directed by frerun output. Hopefully you get the results in 20 
minutes.

frecheck

• Are the restarts there? 

frecheck -l -x $HOME/xml/myAM3.xml -p ncrc2.intel -t prod-openmp 
c48L48_am3p10_dust_emis_newInitCond   

• Ensure the internal consistency of the regression runs. 

frecheck -l -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t prod-
openmp c48L48_am3p10

frecheck -l output 

frecheck -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t prod-
openmp c48L48_am3p10

frecheck output 

Production runs
• FRE can be used in the same manner to prepare and submit a long term production run 
• frerun with no -r option will submit the <production> simulation in <runtime> section the xml 

      <production simTime="11" units="years" npes="576" runTime="16:00:00">



        <segment simTime="12" units="months" runTime="05:20:00"/>
      </production>

Submit the 11 years perturbation job

• Manual staging: 

Step 1: frerun -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t 
prod-openmp c48L48_am3p10_dust_emis

Step 2: Manually run the script in the login shell
Step 3: Submit the job as directed by frerun

• Automatic staging: 

frerun -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t prod-openmp 
c48L48_am3p10_dust_emis -S

Recovering from failed transfers
If you are missing output files on /archive, you will need to recover from failed transfers. To check 
whether history files are missing in /archive, first log onto the analysis nodes and locate your xml file.  
It should be in ~/ncrc/mirrored path to xml on gaea. 

 module load fre
 frelist -d archive -x myAM3.xml -p gfdl.ncrc2-intel -t prod-openmp
 cd $archiveDir/history
 ls

Check whether the history files are ready on Gaea
Log onto Gaea and go to the directory containing your xml file. 

 module load fre
 frelist -d archive -x myAM3.xml -p ncrc2.intel -t prod-openmp
 cd $archiveDir/history
 ls

• If you see .tar files, they’re ready -- use send_file to send them to gfdl. send_file is a tool which 
uses gcp in a batch script, and knows the correct destination path FRE uses in /archive. (Or you 
could find the right destination path in /archive and use gcp directly.) 

 send_file 20010101.nc.tar

• If you see directories, they need further processing -- the model writes out many netcdf files 
which need to be combined into one netcdf file. Keep reading... 



Recover from failed combines
 frelist -d stdout -x myAM3.xml -p ncrc2.intel -t prod-openmp
 cd $stdoutDir/run
 grep msub c48L48_am3p10_ABC.oXXXXXXX | grep ‘.HS’

msub the commands for the missing years of data. 
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