
UsingFRE

• 1 Software Life Cycle
• 2 GFDL Models vs. FMS Component "Models"
• 3 What's in a XML
• 4 FMS Regression testing

• 4.1 Compiler options
• 4.2 Component/Branch/Integration/Validation/System testing

• 5 Regression testing via FRE
• 5.1 Choose the right xml
• 5.2 FRE setup
• 5.3 frelist
• 5.4 fremake
• 5.5 frerun

• 5.5.1 frerun Exercise
• 5.6 frecheck

• 6 Production runs
• 6.1 Submit the 11 years perturbation job

• 7 Recovering from failed transfers
• 7.1 Check whether the history files are ready on Gaea
• 7.2 Recover from failed combines

Software Life Cycle
Traditional Waterfall Model of software development (Ad hoc)

http://wiki.gfdl.noaa.gov/index.php/File:WaterfallModel.JPG

FMS follows more closely a V Model (which has feedback mechanism built-in)

GFDL Models vs. FMS Component "Models"
GFDL Climate Model ATMOS OCEAN SEA ICE LAND

CM2M FV lat-lon, am2 MOM4p1 SIS LAD

CM2G FV lat-lon, am2 GOLD SIS LAD

ESM2M FV lat-lon, am2 MOM4p1 SIS LAD2

ESM2G FV lat-lon, am2 GOLD SIS LAD2

CM3 FV lat-lon, am3 MOM4p1 SIS LAD2

CM3Z Cubed Sphere, am3 MOM4p1 SIS LAD2

The FMS components are linked together and driven via the FMS coupler (coupler.F90 +
flux_exchange.F90)

What's in a XML
• Experiment: A functional simulation unit that can produce output data or executable.
• FRE: FMS Runtime Environment is a bundle of tools to facilitate GFDL model runs across

multiple platforms and sites.
• Example. We want to run the experiment "c48L48_am3p10" on ncrc platform number 2

("ncrc2") using Intel compiler and do postprocessing at GFDL automatically after the
run has finished.

• XML: A fancy document to describe and point to all the input/output data and the setup for the
"experiments". It has specific "Markup" hooks to be recognized and handled by FRE.

http://wiki.gfdl.noaa.gov/index.php/File:V-model.JPG

• Example: AM3.xml
• Example: AM3_skleton.xml

FMS Regression testing
• Answers: The content of restart files at the end of the run.
• Bitwise Reproducibility: The value of all corresponding variables (fields) in two restart files

are identical (to the last digit).

Regression testing should ensure:

• Internal consistency:
• Repeat each experiment at least twice:

• Once with a different PE number/layout.
• Once with a middle restart.

• Ensure the bitwise reproducibility between these 3 runs.
• Bitwise reproducibility of reference runs:

• Ensure the experiment answers match each other (and hence reference run) bitwise
between the intermediate releases.

• If the answers change between major "city" releases track down and document the
reason.

• Long term "climate" run validation
• Given that answers might change between major "city" releases, climate experiments

shall be repeated (at least 100 years duration) to ensure the preservation of climate.

Compiler options

• debug mode: This is the set of compiler options that ensure debugging tools for trapping NaN's
and traceback work properly. Specifically no optimization -O0.

• repro mode: This is the set of compiler options that ensure the bitwise reproducibility of
experiments. Specifically toned down optimization -O2.

• prod mode: This is the set of compiler options used for the fastest turnaround in production
(climate) runs. Specifically full optimization -O3.

Component/Branch/Integration/Validation/System testing

Regression testing comes in many flavors corresponding to the time in the lifecyle:

• Component testing: AKA Unit testing. Testing the code modifications at a very granular level
to ensure the validity and applicability of individual modifications to the source code.

• Usually done by the developers.
• Shall not break the build at the least!

• Branch testing: Regression testing with a mixture of released and un-released cvs banch codes.
• Example: cvs "branch_X" for Ocean component + "siena" relase for all else.
• Done by the developer and FMS group members.
• Alerts developers for regression failures to fix their branch code.

• Integration testing: Merging a chosen set of branch codes together and regression testing with

it (towards a new release).
• Done by the FMS group.
• Alerts developers for regression failures to fix their branch code.

• Validation testing: Regression testing with a defined set of code identified for the incoming
release after all Integration alerts are fixed.

• Done by the FMS group.
• No more changes accepted except critical.

• System testing: AKA end2end testing. Regression testing with a pre-release code that includes
data transfer and postprocessing.

• Done by the FMS group as well as "model runners".
• No more changes accepted except very critical bugs that affect the climate.

Regression testing via FRE
Let's say we want to do a simple Validation testing with the branch called "siena_201204" of the am3
code.

Choose the right xml

• The xmls are usually checked in along with the release.
• cvs co -r siena_201204 xml

• For this session we have prepared 15 variations (perturbations) of the same control experiment
in 15 different xmls

 cd $HOME ; cp -r ~Ni-Zhang.Golaz/ssam2012/siena_201204/xml $HOME/
 cd xml
 ln -s AM3_ssam[dd].xml myAM3.xml

• Review and modify the xml to your needs
• Our example: AM3_ssam11.xml
• Review the setup section to run on ncrc2.

FRE setup

All FRE commands are bundled in a module fre/FRE_VERSION

module load fre/bronx-1

frelist

• List the experiments in the xml

frelist -x $HOME/xml/myAM3.xml -p ncrc2.intel -t prod-openmp

• Each of these xmls contain one (and the same) control experiment and one variation experiment
"inheriting" from it.

• "inherit" is the xml mechanism of choice to do the perturbations, where you may change the
parameters of one experiment to make a new one

• Want to know where the executable sits and where the outputs go for a given experiment?

frelist -d all -x $HOME/xml/myAM3.xml -p ncrc2.intel -t prod-openmp c48L48_am3p10

• Review the xml to figure out which experiment(s) contain checkout/compilation instructions

fremake

• Compile and build the executable for the experiment.
• Platform is ncrc2 loaded with Intel compiler.
• Target is production (optimized) mode compiled with openmp on.

fremake -x $HOME/xml/myAM3.xml -p ncrc2.intel -t prod-openmp c48L48_am3p10

• NOTE: You can directly run the compile script on the login node rather than doing the msub. It
is very verbose!

frerun

• To do the "basic" regression run for the control experiment c48L48_am3p10 :

frerun -x $HOME/xml/myAM3.xml -r basic -p ncrc2.intel -t prod-openmp c48L48_am3p10
-S

• Note the -S for "submit with staging the data" happening before the run.

• To submit all the "rts" tests for later comparison you could run the following command.
• Note the -s for submit without staging data (the data has been staged once the above run

is finished).

frerun -x $HOME/xml/myAM3.xml -r rts -p ncrc2.intel -t prod-openmp c48L48_am3p10 -s

frerun Exercise

Submit a 2 days run on 96 processors for the perturbation experiment c48L48_am3p10_XXX in your
xml BUT start from a different Initial Condition file at:

/lustre/ltfs/scratch/Ni-
Zhang.Golaz/ssam2012/input/siena_201204_regression/20000109.tar

• Step 1: Search for the "initCond" in your xml, this is the dataFile that you need to change.

• Step 2: We want to keep the original experiments as they are, so you need to create a new
experiment in the xml that "inherits" from the original perturbation experiment:

 <experiment name="c48L48_am3p10_dust_emis_newInitCond"
inherit="c48L48_am3p10_dust_emis">
 <input>
 <dataFile label="initCond" target="INPUT/" chksum="" size="" timestamp="">
 <!--<dataSource platform="$(platform)">/lustre/ltfs/scratch/Ni-
Zhang.Golaz/ssam2012/input/siena_201204_20yr/restart/20000101.tar</dataSource> -->
 <dataSource platform="$(platform)">/lustre/ltfs/scratch/Ni-
Zhang.Golaz/ssam2012/input/siena_201204_regression/20000109.tar </dataSource>
 </dataFile>
 </input>
 <runtime>
 <regression name="2days">
 <run days="2" npes="96" runTimePerJob="00:45:00"/>

 </regression>
 </runtime>
 </experiment>

• Step 3:

frerun -x $HOME/xml/myAM3.xml -r 2days -p ncrc2.intel -t prod-openmp
c48L48_am3p10_dust_emis_newInitCond

• Step 4:

Make sure that the frerun does not give warning about missing executable. This is
one way to ensure that the executable exists.

• Step 5:

Inspect the shell script that frerun made. This script is what the resource
managers and the machine understand.

• Step 6:

Try to run the created script manually at your login shell and see what happens.
Why do you think it fails?

• Step 7:

Submit the job as directed by frerun output. Hopefully you get the results in 20
minutes.

frecheck

• Are the restarts there?

frecheck -l -x $HOME/xml/myAM3.xml -p ncrc2.intel -t prod-openmp
c48L48_am3p10_dust_emis_newInitCond

• Ensure the internal consistency of the regression runs.

frecheck -l -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t prod-
openmp c48L48_am3p10

frecheck -l output

frecheck -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t prod-
openmp c48L48_am3p10

frecheck output

Production runs
• FRE can be used in the same manner to prepare and submit a long term production run
• frerun with no -r option will submit the <production> simulation in <runtime> section the xml

 <production simTime="11" units="years" npes="576" runTime="16:00:00">

 <segment simTime="12" units="months" runTime="05:20:00"/>
 </production>

Submit the 11 years perturbation job

• Manual staging:

Step 1: frerun -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t
prod-openmp c48L48_am3p10_dust_emis

Step 2: Manually run the script in the login shell
Step 3: Submit the job as directed by frerun

• Automatic staging:

frerun -x /ncrc/home2/Niki.Zadeh/summerSchool/AM3.xml -p ncrc2.intel -t prod-openmp
c48L48_am3p10_dust_emis -S

Recovering from failed transfers
If you are missing output files on /archive, you will need to recover from failed transfers. To check
whether history files are missing in /archive, first log onto the analysis nodes and locate your xml file.
It should be in ~/ncrc/mirrored path to xml on gaea.

 module load fre
 frelist -d archive -x myAM3.xml -p gfdl.ncrc2-intel -t prod-openmp
 cd $archiveDir/history
 ls

Check whether the history files are ready on Gaea
Log onto Gaea and go to the directory containing your xml file.

 module load fre
 frelist -d archive -x myAM3.xml -p ncrc2.intel -t prod-openmp
 cd $archiveDir/history
 ls

• If you see .tar files, they’re ready -- use send_file to send them to gfdl. send_file is a tool which
uses gcp in a batch script, and knows the correct destination path FRE uses in /archive. (Or you
could find the right destination path in /archive and use gcp directly.)

 send_file 20010101.nc.tar

• If you see directories, they need further processing -- the model writes out many netcdf files
which need to be combined into one netcdf file. Keep reading...

Recover from failed combines
 frelist -d stdout -x myAM3.xml -p ncrc2.intel -t prod-openmp
 cd $stdoutDir/run
 grep msub c48L48_am3p10_ABC.oXXXXXXX | grep ‘.HS’

msub the commands for the missing years of data.

	UsingFRE
	Software Life Cycle
	GFDL Models vs. FMS Component "Models"
	What's in a XML
	FMS Regression testing
	Compiler options
	Component/Branch/Integration/Validation/System testing

	Regression testing via FRE
	Choose the right xml
	FRE setup
	frelist
	fremake
	frerun
	frerun Exercise

	frecheck

	Production runs
	Submit the 11 years perturbation job

	Recovering from failed transfers
	Check whether the history files are ready on Gaea
	Recover from failed combines

