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Visible radiation
(sunlight) readily
penetrates the

atmosphere and
warms the earth
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Invisible infra-red radiation is
emitted by the earth and cools
it down. But some of this infra-
red is trapped by greenhouse
gases in the atmosphere which
act as a blanket, keeping the
heat in
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Radiative Transfer Equation (RTE):
Photon Transport

At any frequency, the monocromatic RTE is
di/dc=1-J

" | = intensity, T = extinction optical depth, J = source
function.
" extinction = absorption + scattering.

" Source function from a volume is Planck emission in the
longwave (LW), and photon scattering in shortwave (SW).

" If no scattering, equation reduces to Beer’s Law of
exponential attenuation {also the case if there were no
multiple scattering}.



Radiation laws
KirchholT's law: emissivity is absorptivity

é(;s ) = (1();)

for a blackbody =1
for a gray body <1

Planck’s formula (emission intensity):

ex Iu ] i

_27dx -
B(2,T)=55€ . ZT

in Wm*sr' um’!
T is temperature (K)
k is Boltzmann constant (1.38x10™ JK™)
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Integration of Planck function over all A's

gives Stefan-Boltzmann law:
B1). BT =T
0 n

ais S-B constant (5.67¢10" Wm*K*)

nB(T) = of*

is blackbody energy flux from one
hemisphere

Every object with T > 0K radiates!

Wien's law: integration Planck function

and first derivative to zero

Ama\ T h( '
© 4.965kT

Note location of A as a function of T!
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Photon collides with scatterer

Photon encounters particulate matter (including

molecules).

Then:

can be scattered and absorbed

relative amount of light scattered and absorbed
can vary with frequency (or wavelength)

Scattering by particulates can occur alongside
gaseous absorption at the same wavelength



Scattering versus Absorption

Molecules can scatter and absorb radiation

Scattering is a more continuous phenomena
with wavelength; no discreteness in wavelength
as for molecular absorption

Scatterers * molecules: aerosols; water clouds;
ice clouds; raindrops; snowflakes, halil

Particles can also absorb radiation
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Parameterizations of RTE

RTE can be solved exactly (line-by-line, doubling-adding
method (e.g., Hunt and Grant, J. Atmos. Sci., 1969; Ramaswamy and
Freidenreich, JGR, 1991)...every molecular line, each species.

RTE is not solvable analytically for use in climate models.
Approximations are used.

For SOLAR, scattering-absorbing problem reduced to a
pair of differential equations that can be solved analytically
to yield photons absorbed and scattered out of a volume
due to interactio of an incident light beam with matter.

Most solar parameterizations in GCMs employ
" 2- (or 4-) stream approximation (e.g., Coakley-Chylek, J. Atmos. Sci., 1975)
" Delta-Eddington approximation (Joseph et al., J. Atmos. Sci., 1976)
" K-distribution strategy (e.g., Lacis and Oinas, J. Atmos. Sci., 1986)



The particulate scattering-absorbing problem

Solving the EM equations, with the provision that the
electric and magnetic fields have to be continuous
across the air-particle discontinuity

MIE theory " scattering by a sphere

Basically, most of the relevant particles are spherical in
shape but important exceptions occur.

Solution for the scattered field is represented by Bessel
functions and Legendre polynomials which are functions
of the size parameter (ratio of particle radius to
wavelength) AND Refractive Index .(a function of
wavelength and depending on the particle type).

Mie solution * provides scattering and extinction (and thus
absorption) coefficients; and the phase function (or how
the scattered energy is distributed with angle).



Quantities needed to determine the radiation distribution, and that are
obtained from the MIE solutions:

" Extinction cross-section (leading to extinction coefficient and
extinction optical depth)

" Scattering cross-section (leading to scattering coefficient and
scattering optical depth)

= scattering optical depth / extinction optical depth

— ) = fraction of light absorbed at each photon-particle encounter
(“coalbedo”)

If ® = 1, no absorption and photons are merely redistributed

If ® < 1, then absorption also occurs, leading to HEATING of the layer
where the particles are located.

)
(1

" Phase function describing the angular distribution of scattering [a
simplified version of this is the ‘asymmetry parameter’, which
describes the ratio of light scattered that is in the forward direction]



RTE: Photon Transport

" Convolution of absorption and scattering. How to convolve the

fine structure of molecular absorption with the broader spectral
variation of scatterers?

" Represent by sum of exponentials, with each term having Beer’s
Law-like property

T (gas) =X [a; exp (-k; W)]

T = transmission of gas that represents the approximation
W = amount of gas absorber in path

| = pseudo-monochromatic intervals

a = numerical weights

K = coefficients : ; ;
Wiscombe and Evans (J. Comput. Phys., 1977); Freidenreich and
Ramaswamy (JGR, 1999).
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Fig. 2.1a Spectral dependence {(W/m~- cm ') of the incoming solar flux between 0.2
and 1 pm wavelength at the 1op-of-the-atmosphere (TOA), the gaseous optical depth,
the drop coalbedo of a typical water cloud,. and the ciear-sky refiectivity. Also shown
are the delineation of the band structure adopted to consStruct & New S
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parameterization for GCTMs. The gases contributing to the absorption in each band are
also shown.



5

o
lrL |

‘s
-
=
=
: - i
| i

o — -t & }
= y % 100
% _Ialj 1 =
3 ! ! as
— : 3 Depth
S . »
g L o (001

DROP COALBEDOD
0
uq"m '
jﬂ-

P e U
' e
©

Cloud
r SS alb
L o . 5 . 0.999
: 2 - = 3 e
A ()

Line-by-line plus Doubling-Adding
(‘benchmark’) computation

Fg. 2.7 Same as F

_ o 2. 7a, but for near-infrared greatser tham 1 jam.
Raflectivity at TOA im the

near-irdrared is negligibile and hence is NOt shown.



GHL | fagem, }/!‘r"r‘;'r?;’;'iasrsion:\ tl, (s, €0, ) (SO‘&I’) sanps |
(SOlar) Efg;iiirt]ita?y Absorption and 18 (SO al»)
sum fit scattering by Monoch
Doubling molecules, _romatic noscat
Zf;?jing < ) aerosols, clouds v
method 38 (IR)

~

TR Ich;: g\ll(;ﬁip [Aer030|3 ) [ Other features J
GFDL | Improved Fu& max- | sulf, ss, bc, | variation in soil and vegetation,

Slingo Liou rand | oc, dust: ocean with sza dependence;

(Freidenreich | (93) climatology; | spectral dependence

& rh effect

Ramaswamy

99)
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Slingo (J. Atmos. Sci., 1989). Fu and Liou (J. Atmos. Sci., 1993).

AM2: GFDL GAMDT (J. Clim., 2004).

AM3: Donner et al., (J. Clim., 2011).




" Atmosphere contains particulate matter in the
different homogeneous layers.

" Multiple scattering occurs when photons keep on
encountering particles. This can happen within a
single layer and gives rise to the net

REFLECTION and TRANSMISSION of light by that
layer

" Multiple scattering can also occur between different
layers of the atmosphere, and between the
atmosphere and surface



CLOUDS (Water)

3.9 Clouds and Radiation 65
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Fig. 3.13 The dependence of (2) cloud albedo and (b) cloud absorption on cloud liquid water path
and solar zenith angle. Values are given in percent. [From Stephens (1978). Reprinted with permission
from the American Meteorological Society.]
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CLOUDS (Water vs. Ice)
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Fig. 3.15 The dependence of the longwave emissivity on (a) liquid water content (from Slingo
et al. (1982); reprinted with permission from the Royal Meteorological Society] and (b) ice content [from
Griffith et al. (1980); reprinted with permission from the American Meteorological Society).

Water clouds can usually be treated
as “blackbody” radiative agents in the
longwave, just like the surface.
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Fig. 4. Radiative-convective model results for the long-wave cool-
ing and solar heating rates. The letters L and S denote long-wave and

solar. respectively. The model results are taken from Afanabe and
Strickler [1964].
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For a THIN aerosol layer, with optical depth t, backscatter fraction ()
and single-scattering albedo w, irradiated by Sun at angle cos'(u),

Fraction of radiation Reflected and Transmitted is [see Coakley and
Chylek, J. Atmos. Sci., 1973; 2-stream approximation]

R(u) = (U?-1) [exp(ot / ) — exp (<ot /)] /D
T(u)= 4U/D

where U =[1 —o + 20B(R)]"2/ [1 - ®]"2
o =[1-0+20BW)]" [1-0]"2
D={U+1)?exp(at/pn)} — {(U-1)?exp (-at/u)}

If aerosol is over a surface with albedo A,

[R(n) - Al

expresses whether aerosol causes a COOLING or HEATING
radiative tendency for the climate system
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