
Fortran GPU Compilers: Improving
But No Silver Bullet

Tom Henderson
NOAA Global Systems Division

Thomas.B.Henderson@noaa.gov

Mark Govett, Jacques Middlecoff
Paul Madden, James Rosinski,

Craig Tierney

9/12/12

Thunder Stolen?

2

  I was planning a rant but…
  Compiler vendors are

already responding to my
whining!

 Bullet is not silver yet…
  Forecast: more whining

9/12/12

Outline

 The despair of “Tightly-Nested Outer
Loops” (TNOL)

 The joy of bitwise-exact comparison
 The ongoing agony of data transfers

3

9/12/12

TNOL

4

! This is OK
do ipn=1,nip
 do k=1,nvl
 <statements>
 enddo
enddo

! This is NOT OK
do ipn=1,nip
 <statements>
 do k=1,nvl
 <statements>
 enddo
enddo

  Commercial directive-based Fortran GPU
compilers require(d) “tightly-nested outer
loops” (TNOL)
  Forces extensive restructuring of legacy codes
  Restructuring may promote arrays increasing

memory footprint
  Not a limitation for F2C-ACC

9/12/12

TNOL

 Created NIM “vdmintv” stand-alone test
  Key NIM subroutine (25% of wall-clock

time)
 TNOL requires promotion of temporary

arrays to higher rank
  2.5x slow down on CPU!

5

9/12/12

TNOL

 GPU optimization via F2C-ACC and
NVIDIA’s Paulius Micikevicius
  Paulius identified best possible CUDA

solution
 TNOL costs ~15% on GPU

  Comparing fastest schemes using mixes of
GPU “shared” and “local” memory

6

9/12/12

Compiler Vendor Response

 Strong response for TNOL
  Cray
  CAPS
  PGI
  (PathScale)

 Eventual fix in OpenACC
  Expect approaches to converge

7

9/12/12

Compiler Vendor Response

 Some progress on more advanced
optimizations like shared/local memory
  Cray

  Shared memory, close to F2C-ACC
performance

  CAPS
  Shared memory, close to F2C-ACC

performance
  PGI

 Different approaches now
 8

9/12/12

Outline

 The despair of “Tightly-Nested Outer
Loops” (TNOL)

 The joy of bitwise-exact comparison
 The ongoing agony of data transfers

9

9/12/12

Bitwise-Exact Comparison

 As of CUDA v4.2 and F2C-ACC v4.2
bitwise-exact comparison between CPU
and GPU can be achieved!
  nvcc compiler flags

  “-ftz=true –fmad=false”
  Avoid library functions including “pow” (**)

 Greatly speeds up debugging
  NIM now has a run-time switch to run “**”

operations on CPU for automated testing

10

9/12/12

Outline

 The despair of “Tightly-Nested Outer
Loops” (TNOL)

 The joy of bitwise-exact comparison
 The ongoing agony of data transfers

11

Host-Device Data Transfers

  “Accelerator” model is well-supported

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y
X,Y,C

Z
X,Z

A,B,C
CPU GPU/MIC PCIe

Host-Device Data Transfers

  “State on Accelerator” is a bit harder

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y,C

X,Z

A,B,C
CPU GPU/MIC PCIe

Host-Device Data Transfers

 Per-kernel validation is painful!

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y

Z

A,B,C
CPU GPU/MIC PCIe

9/12/12

Please Make Data Transfers
Easier

 Compiler has all the information it needs
via directives

 User should be able to say “data lives
here, run the kernel there”
  Reduce “accidental complexity”

 Stop the whining!

15

9/12/12

Thanks to…

 Francois Bodin, Guillaume Poirier, and
others at CAPS for assistance with HMPP

 Pete Johnsen at Cray for assistance with
Cray OpenACC GPU compiler

 Dave Norton and others at PGI for
assistance with PGI Accelerator

 Paulius Micikevicius at NVIDIA
 We want to see multiple successful

commercial directive-based Fortran
compilers for GPU/MIC

16

17

Thank You

