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Test Case

• Linear advection with constant uniform velocity
• Three-dimensional cube with periodic 

boundaries
• Advect Gaussian wave through cube corner 

back to original position
• Strong scaling, 420x420x420
• Explicit 2nd-order single-stage integration,

3x3x3 centered stencil, 64-bit precision



Computers
Table 2.2: Technical details of tested computers.

System JaguarPF Hopper II Lens Yona
Compute nodes 18688 6392 31 16
Memory per node (GB) 16 32 64 32
AMD Opteron sockets per node 2 2 4 2
Cores per Opteron socket 6 12 4 6
Opteron clock (GHz) 2.6 2.1 2.3 2.6
Interconnect Cray SeaStar 2+ Cray Gemini DDR Infiniband QDR Infiniband
MPI Cray MPT 4.0.0 Cray MPT 5.1.3 OpenMPI 1.3.3 OpenMPI 1.7a1
NVIDIA Tesla GPU – – C1060 C2050
GPU memory (GB) – – 4 3

11



Computers
Table 2.2: Technical details of tested computers.

System JaguarPF Hopper II Lens Yona
Compute nodes 18688 6392 31 16
Memory per node (GB) 16 32 64 32
AMD Opteron sockets per node 2 2 4 2
Cores per Opteron socket 6 12 4 6
Opteron clock (GHz) 2.6 2.1 2.3 2.6
Interconnect Cray SeaStar 2+ Cray Gemini DDR Infiniband QDR Infiniband
MPI Cray MPT 4.0.0 Cray MPT 5.1.3 OpenMPI 1.3.3 OpenMPI 1.7a1
NVIDIA Tesla GPU – – C1060 C2050
GPU memory (GB) – – 4 3

11



Computers
Table 2.2: Technical details of tested computers.

System JaguarPF Hopper II Lens Yona
Compute nodes 18688 6392 31 16
Memory per node (GB) 16 32 64 32
AMD Opteron sockets per node 2 2 4 2
Cores per Opteron socket 6 12 4 6
Opteron clock (GHz) 2.6 2.1 2.3 2.6
Interconnect Cray SeaStar 2+ Cray Gemini DDR Infiniband QDR Infiniband
MPI Cray MPT 4.0.0 Cray MPT 5.1.3 OpenMPI 1.3.3 OpenMPI 1.7a1
NVIDIA Tesla GPU – – C1060 C2050
GPU memory (GB) – – 4 3

11



Implementations
• Single task (Fortran + OpenMP)
• Bulk-synchronous MPI
• MPI using nonblocking communication for overlap
• MPI using OpenMP threading for overlap
• GPU resident (CUDA Fortran)
• GPU with bulk-synchronous MPI
• GPU with MPI overlap using CUDA streams
• CPU and GPU computation with bulk-synchronous MPI
• CPU and GPU computation partitioned for overlap with 

nonblocking MPI and CPU-GPU communication



CPU-GPU Domain Decomposition
global domain decomposed 

into MPI-task domains!
task domain partitioned into 

CPU and GPU domains!

halo for MPI 
communication!

halos for CPU-GPU 
communication!

CPU(s)!

GPU!

Figure 2.1: Domain decomposition for CPU-GPU implementations described in
Sections 2.3.8 and 2.3.9. The test domain is three dimensional, but this figure is
simplified to two dimensions.
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Figure 2.2: Lines of Fortran code for each implementation, minus blank lines and

comments.

the GPU computation almost triples the number of lines. The combination of CPU

computation, GPU computation, and MPI parallelism is most expensive, with the full-

overlap implementation using exactly four times as many lines as the single-process

multithreaded implementation (860 versus 215).

2.4 Results

2.4.1 MPI Performance and Overlap

First I consider the potential performance improvement of MPI overlap. Figure 2.3

shows the performance of each implementation on JaguarPF for a range of core counts.

JaguarPF has no GPUs, so no GPU implementations are included. Each value is the

best result for a given number of cores, among all measured numbers of OpenMP

threads per MPI task. Because JaguarPF has two 6-core sockets per node, I include

measurements for 1, 2, 3, 6, and 12 threads per task.
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Best JaguarPF Performance
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Figure 2.3: The best performance of each JaguarPF implementation for a range of
core counts.
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Best Hopper-II Performance
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Figure 2.4: The best performance of each Hopper-II implementation for a range of
core counts.

For core counts below 4000, the implementation with overlap from nonblocking

communication (Section 2.3.3) can slightly outperform the bulk-synchronous imple-

mentation (Section 2.3.2). At 6000 and above, as the work per core dwindles, the

bulk-synchronous implementation has a significant advantage. The implementation

using an OpenMP thread for overlap (Section 2.3.4) consistently lags in performance.

Figure 2.4 shows analogous results for Hopper II. It has two 12-core sockets per

node, where each socket has two 6-core chips, so I include measurements for 1, 2,

3, 6, 12, and 24 threads per task. Likely because of the newer Gemini interconnect,

Hopper II scales better than JaguarPF, so I include results out to 49152 cores. Like

for JaguarPF, the implementation with overlap from nonblocking communication
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Bulk-Synchronous Performance on 
JaguarPF
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Figure 2.5: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on JaguarPF for a range of core counts and various numbers of OpenMP
threads per MPI task.

(Section 2.3.3) performs slightly better than the bulk-synchronous implementation

(Section 2.3.2) for core counts below some limit, but that limit is an order of

magnitude higher on Hopper II. Again the implementation using an OpenMP thread

for overlap (Section 2.3.4) consistently lags in performance.

Figures 2.11 and 2.12, which I explain in detail in Section 2.4.4, show results for

Lens and Yona. For my test case on these smaller computers, overlap of computation

and communication improves performance little or none at all.

2.4.2 OpenMP Threads Per MPI Task

Each result in Figures 2.3 and 2.4 is for the best-performing number of OpenMP

threads per MPI task for that number of cores. Here I consider one implementation
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Figure 2.5: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on JaguarPF for a range of core counts and various numbers of OpenMP
threads per MPI task.

(Section 2.3.3) performs slightly better than the bulk-synchronous implementation

(Section 2.3.2) for core counts below some limit, but that limit is an order of

magnitude higher on Hopper II. Again the implementation using an OpenMP thread

for overlap (Section 2.3.4) consistently lags in performance.

Figures 2.11 and 2.12, which I explain in detail in Section 2.4.4, show results for

Lens and Yona. For my test case on these smaller computers, overlap of computation

and communication improves performance little or none at all.

2.4.2 OpenMP Threads Per MPI Task

Each result in Figures 2.3 and 2.4 is for the best-performing number of OpenMP

threads per MPI task for that number of cores. Here I consider one implementation

21

each ratio best 
somewhere

best ratio grows with core count



Bulk-Synchronous Performance on 
Hopper II
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Figure 2.6: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on Hopper II for a range of core counts and various numbers of OpenMP
threads per MPI task.
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Figure 2.6: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on Hopper II for a range of core counts and various numbers of OpenMP
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GPU-Resident Performance on Lens
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Figure 2.9: Performance of the GPU-resident implementation (Section 2.3.5) on
Lens using a variety of two-dimensional block sizes.
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GPU-Resident Performance on Lens
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Figure 2.9: Performance of the GPU-resident implementation (Section 2.3.5) on
Lens using a variety of two-dimensional block sizes.
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GPU-Resident Performance on Yona
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Figure 2.10: Performance of the GPU-resident implementation (Section 2.3.5) on
Yona using a variety of two-dimensional block sizes.

Figure 2.9 shows the performance on Lens for a variety of two-dimensional block

sizes. The C1060 GPUs on Lens support three-dimensional block sizes of up to 512

elements, and they have a “warp” size of 32. Memory access is fastest for contiguous

blocks of at least a half warp, so I only consider x dimensions of 16, 32, 64, and 128. I

use two-dimensional blocks instead of three because they allow better memory reuse

in my test. I vary the y dimension up to the maximum total size of 512 elements.

An x dimension of 32, the warp size, tends to provide the best performance, with

the top performance coming from a block size of 32× 11. I use this block size for all

my parallel GPU experiments on Lens. (See Datta et al. (2008) for an investigation

of automatic tuning of GPU block size.)

Figure 2.10 shows the analogous performance on Yona. The C2050 GPUs on Yona

support block sizes of up to 1024 elements, and they have a “warp” size of 32. Again,
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Figure 2.10: Performance of the GPU-resident implementation (Section 2.3.5) on
Yona using a variety of two-dimensional block sizes.

Figure 2.9 shows the performance on Lens for a variety of two-dimensional block

sizes. The C1060 GPUs on Lens support three-dimensional block sizes of up to 512

elements, and they have a “warp” size of 32. Memory access is fastest for contiguous

blocks of at least a half warp, so I only consider x dimensions of 16, 32, 64, and 128. I

use two-dimensional blocks instead of three because they allow better memory reuse

in my test. I vary the y dimension up to the maximum total size of 512 elements.

An x dimension of 32, the warp size, tends to provide the best performance, with

the top performance coming from a block size of 32× 11. I use this block size for all

my parallel GPU experiments on Lens. (See Datta et al. (2008) for an investigation

of automatic tuning of GPU block size.)

Figure 2.10 shows the analogous performance on Yona. The C2050 GPUs on Yona

support block sizes of up to 1024 elements, and they have a “warp” size of 32. Again,
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Best Performance on Lens
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Figure 2.11: The best performance of each Lens implementation for a range of core
counts. The GPU implementations use one GPU per 16 cores.

the best performance comes from an x block size of 32, but with a slightly smaller y

block size of 8. I use this block size, 32× 8, for all my parallel GPU experiments on

Yona.

2.4.4 Parallel GPU Performance and Overlap

Figure 2.11 shows the performance of each implementation on Lens for a range of core

counts. Each value is the best performance for that implementation, among a variety

of threads per task and, where applicable, box thicknesses (from Figure 2.1). The

CPU-only implementations benefit little from overlap, but the GPU implementations

benefit greatly from overlap, particularly for the full-overlap case (Section 2.3.9),

where CPU computation, GPU computation, MPI communication, and CPU-GPU

28
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the best performance comes from an x block size of 32, but with a slightly smaller y

block size of 8. I use this block size, 32× 8, for all my parallel GPU experiments on

Yona.

2.4.4 Parallel GPU Performance and Overlap

Figure 2.11 shows the performance of each implementation on Lens for a range of core

counts. Each value is the best performance for that implementation, among a variety

of threads per task and, where applicable, box thicknesses (from Figure 2.1). The

CPU-only implementations benefit little from overlap, but the GPU implementations

benefit greatly from overlap, particularly for the full-overlap case (Section 2.3.9),

where CPU computation, GPU computation, MPI communication, and CPU-GPU
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Best Performance on Yona
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Figure 2.12: The best performance of each Yona implementation for a range of core
counts. The GPU implementations use one GPU per 12 cores.

communication can occur concurrently. In fact, the best CPU-GPU performance

exceeds the sum of the best CPU-only performance plus the best GPU-computation

performance.

The results for Yona are still more striking. Figure 2.12 shows the best

performance of each implementation for a range of core counts. The GPUs are a

larger fraction of the computational power on Yona than on Lens, so the performance

of the best CPU-GPU implementation is more than four times the performance of

the best CPU-only implementation.
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communication can occur concurrently. In fact, the best CPU-GPU performance

exceeds the sum of the best CPU-only performance plus the best GPU-computation

performance.

The results for Yona are still more striking. Figure 2.12 shows the best

performance of each implementation for a range of core counts. The GPUs are a

larger fraction of the computational power on Yona than on Lens, so the performance

of the best CPU-GPU implementation is more than four times the performance of

the best CPU-only implementation.
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CPU-GPU Overlap Performance on 
Lens
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Figure 2.13: The performance of the CPU-GPU overlap implementation

(Section 2.3.9) on Lens for various combinations of OpenMP threads per MPI task

and box thickness.
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CPU-GPU Overlap Performance on 
Lens

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  50  100  150  200  250  300

P
er

fo
rm

an
ce

 (
G

F
)

Cores (1 GPU per 16 Cores)

Threads/Task, Box Width
16, 2
16, 4
16, 6

8, 4
8, 11

Figure 2.13: The performance of the CPU-GPU overlap implementation

(Section 2.3.9) on Lens for various combinations of OpenMP threads per MPI task

and box thickness.
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CPU-GPU Overlap Performance on 
Yona
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Figure 2.14: The performance of the CPU-GPU overlap implementation

(Section 2.3.9) on Yona for various combinations of OpenMP threads per MPI task

and box thickness.

2.4.5 CPU-GPU Load Balancing and Overlap

Next I consider the performance of the CPU-GPU overlap implementation for different

numbers of threads per task and different box thicknesses. Figure 2.13 shows this

performance on Lens. Each combination plotted has the best performance for at

least one core count. In general, the best performance comes from few tasks per

node, and the best box width decreases with increasing core count. This decrease

makes sense because the amount of work per core also decreases with core count.

Figure 2.14 shows the performance of the CPU-GPU overlap implementation on

Yona. Again, each combination plotted has the best performance for at least one core

count. Like for Lens, the best performance comes from few tasks per node, often just

one task.
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performance on Lens. Each combination plotted has the best performance for at

least one core count. In general, the best performance comes from few tasks per

node, and the best box width decreases with increasing core count. This decrease

makes sense because the amount of work per core also decreases with core count.

Figure 2.14 shows the performance of the CPU-GPU overlap implementation on

Yona. Again, each combination plotted has the best performance for at least one core

count. Like for Lens, the best performance comes from few tasks per node, often just
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Overlapping Computation and Communication 
for Advection on Hybrid Parallel Computers

• MPI overlap less important for this test
• But tuning threads/task is important
• Overlapping CPU computation, GPU computation, 

MPI communication, and CPU-GPU communication
- Improves performance by more than 2x
- Matches GPU-resident performance per GPU

• Best performance from giving minimal (but non-
vanishing) work to CPU

• Performance comes at a 4x cost in lines of code
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